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Abstract

Background: The past decade has witnessed remarkable progress towards resolution of the Tree of Life. However,
despite the increased use of genomic scale datasets, some phylogenetic relationships remain difficult to resolve.
Here we employ anchored phylogenomics to capture 107 nuclear loci in 29 species of acanthomorph teleost fishes,
with 25 of these species sampled from the recently delimited clade Ovalentaria. Previous studies employing multilocus
nuclear exon datasets have not been able to resolve the nodes at the base of the Ovalentaria tree with confidence. Here
we test whether a phylogenomic approach will provide better support for these nodes, and if not, why this may be.

Results: After using a novel method to account for paralogous loci, we estimated phylogenies with maximum likelihood
and species tree methods using DNA sequence alignments of over 80,000 base pairs. Several key relationships
within Ovalentaria are well resolved, including 1) the sister taxon relationship between Cichlidae and Pholidichthys, 2) a
clade containing blennies, grammas, clingfishes, and jawfishes, and 3) monophyly of Atherinomorpha (topminnows,
flyingfishes, and silversides). However, many nodes in the phylogeny associated with the early diversification of
Ovalentaria are poorly resolved in several analyses. Through the use of rarefaction curves we show that limited
phylogenetic resolution among the earliest nodes in the Ovalentaria phylogeny does not appear to be due to a
deficiency of data, as average global node support ceases to increase when only 1/3rd of the sampled loci are
used in analyses. Instead this lack of resolution may be driven by model misspecification as a Bayesian mixed
model analysis of the amino acid dataset provided good support for parts of the base of the Ovalentaria tree.

Conclusions: Although it does not appear that the limited phylogenetic resolution among the earliest nodes in
the Ovalentaria phylogeny is due to a deficiency of data, it may be that both stochastic and systematic error
resulting from model misspecification play a role in the poor resolution at the base of the Ovalentaria tree as a
Bayesian approach was able to resolve some of the deeper nodes, where the other methods failed.
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Background
Assembling the tree of life is one of the primary goals of
systematic biology [1]. There is substantial progress to-
wards the resolution of major lineages of vertebrates in-
cluding birds [2], mammals [3], squamates [4, 5], and
ray-finned fishes [6–8]. However, most phylogenetic
studies with comprehensive taxon sampling that use
large DNA sequence datasets continue to exhibit several
shallow and deep nodes in the phylogeny that remain
poorly resolved [9–11]. It is generally not clear if the
lack of resolution at a particular node in a phylogenetic
tree is the result of random and systematic estimation
error [12], incomplete lineage sorting exacerbated by
relatively rapid lineage diversification [13], or the lack of
phylogenetic signal to resolve short internodes in phylo-
genetic trees [14, 15]. Increased sampling of DNA se-
quence data may help resolve poorly supported nodes
when lack of resolution is driven by ancestral poly-
morphism and limited phylogenetic signal; however,
conclusions from simulations and empirical studies are
equivocal [16–20].
The advent of high-throughput sequencing technology

offers a strategy to rapidly collect large amounts of data
for phylogenetic inference [21, 22]. Phylogenomic data-
sets provide resolution to both shallow [16] and deep
[23] phylogenetic relationships by employing different
classes of markers, dependent on the time scale of diver-
gence among the lineages in a particular study (see [24]
for a review). This flexibility in phylogenomic data sam-
pling strategies allows investigators to collect DNA se-
quence data that facilitates the simultaneous resolution
of both shallow and deep phylogenetic divergences.
Hybrid enrichment, or sequence capture, uses short

DNA sequences as capture probes that are designed to
target areas of interest in a genome. Once these targets
are captured they are sequenced using next-generation
methods [25]. These probes can be designed for any part
of the genome under study, whether for targeting loci
associated with human diseases [26] or specific genes for
phylogenetic inference [21, 22]. At least two different hy-
brid enrichment methods are currently being used for
phylogenomics, each targeting different regions of the
genome. The ultraconserved element approach (UCE)
targets very highly conserved regions of the genome to
capture non-coding regions of the genome. The UCEs
Faircloth et al. [21] used in their initial probe set were
identified in the genomes of two birds and one lizard,
making an amniote-oriented kit. The anchored hybrid
enrichment method (AHE) instead targets a set of loci
that are primarily in coding regions of the genome. In
AHE, probes are designed specifically to highly con-
served and widely distributed regions of the genome that
are flanked by less conserved regions. The loci used in
the AHE kit were identified using broader and deeper

taxonomic sampling than what was used for the original
UCE design, increasing capture efficiency for a wider
taxonomic range relative to those markers. This facili-
tates the capture of homologous loci that are useful for
both old and more recent divergences, a property shared
with UCEs [22, 27].
One advantage to AHE, which we utilize here, is the

ease of generating reliable alignments due to the paucity
of gapped regions and saturated sites in the target re-
gions. Another advantage is increased levels of phylo-
genetic information in target regions, compared to those
targeted in UCE studies (A.R. Lemmon, unpub. data), as
a consequence of targeting more variable regions of the
genome. The original AHE probe set was designed by
comparing the genomes of five vertebrate lineages:
humans, squamates, birds, amphibians, and teleost
fishes. This provided 512 coding genes for phylogenetic
inference [22]. While this strategy provided a broad
taxonomic focus, the species used in this first probe set
were not necessarily ideal as model taxa. For instance,
the fish species used, Danio rerio, is over 250 million
years divergent from a large proportion of teleost fishes
[6]. Thus, the first iteration of the vertebrate kit may be
expected to be only partially successful in capturing the
full suite of loci because of the large divergence between
the model species and the experimental ones.
An advantage of hybrid enrichment is that it allows

the capture of all the homologues of a gene. However,
this gives rise to the uncertainty as to whether the se-
quences aligned in a phylogenetic matrix are ortholo-
gous. This is of particular concern in teleost fishes,
where there has been a whole genome duplication event
(WGD) prior to the diversification of all living teleosts
[28, 29]. An alignment with paralogous genes could pro-
duce a gene-family tree, not the true species tree, or the
differential loss of duplicate gene copies could lead to
discordance between gene trees and species trees [30].
In addition, if multiple copies of paralogous loci are used
to represent one individual’s sequence, such as through
generating consensus sequences across gene copies, this
would lead to false phylogenetic signal [31]. This situ-
ation could be especially problematic when a majority of
the sampled lineages are represented with only one indi-
vidual and the true species tree is generally unknown.
The predicted result of non-orthologous loci in a dataset
is the inference of an inaccurate phylogeny, especially in
situations where there is weak phylogenetic signal in a
dataset [31, 32]. Thus, accurate assessment of orthology
is essential in teleost phylogenomics studies.
Ovalentaria is a clade of teleost fishes containing more

than 4800 species that are classified into 40 taxonomic
families. This lineage comprises more than 27 % of all
percomorph teleosts and approximately 16 % of all living
ray-finned fishes [33]. Relaxed molecular clock analyses
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estimate the age of Ovalentaria at approximately 91 mil-
lion years (Ma) [8]. Included in Ovalentaria are familiar
clades of fishes such as cichlids, blennies, damselfishes,
silversides, dottybacks, and mullets. In addition to pro-
viding strong support for the monophyly of Ovalentaria,
previous phylogenetic studies using DNA sequences
sampled from ten nuclear genes discovered that cichlids
and the enigmatic Engineer Goby, Pholidichthys, are sis-
ter lineages. These studies were consistent with trad-
itional taxonomic hypotheses in resolving lineages such
as blennies and the atherinomorphs as monophyletic.
However, interrelationships among the major lineages of
Ovalentaria are not well-resolved, as short branch
lengths and poorly supported nodes characterize the
earliest divergences in the clade [7, 8, 33, 34]. It is not
clear, though, if the lack of resolution among the early
diverging lineages of Ovalentaria can be ameliorated
through phylogenetic analyses of larger DNA sequence
datasets.
Here we employ anchored hybrid enrichment to deter-

mine if a phylogenomic dataset provides enhanced reso-
lution of phylogenetic relationships among the major
lineages of Ovalentaria, keeping in mind that the AHE
kit we used represented the first iteration of the method
in this group. After screening for the presence of paralo-
gous loci, which may be have arisen due to the WGD,
we inferred phylogenies using over 80,000 bp of DNA
sequence data. We also explored the effect of increasing
the size of DNA sequence datasets on overall phylogen-
etic resolution, as measured by average node support
across the phylogeny, which included certain key nodes
in the Ovalentaria tree.

Results
Among the 512 targeted loci 405 were captured for at
least four species. There were a total of 638 homolog
sets aligned for these 405 loci (see Materials and

Methods for details on inference of homolog sets). The
number of homolog sets for each locus ranged from 1 to
5, with the number of loci inversely related to the num-
ber of homolog sets (Fig. 1). The majority of loci, 62 %,
were present in one homolog set, and 86.7 % were
present in either one or two homolog sets. The summary
statistics on the AHE dataset before manual curation
can be found in Table 1. All species had similar statistics,
with the exception of Pholidicthys, which had fewer con-
tigs and reads in contigs, lower enrichment efficiency,
percentage of reads in assemblies, and the number of
reads per locus, than the other sampled species.
The initial 405 captured loci were reduced to 254 after

removing those loci that were missing from more than
two of the sampled species. Additional paralogous copies
were discovered through inspection of the individual
gene trees and distance matrices after the initial filtering
of loci using the paralog picker (see Materials and
Methods).
After removal of all paralogous copies there was 107

loci, totaling 82,782 bp of DNA sequence data (Table 2).
In nine cases we used both copies of a particular locus.
The full matrix contained 43 % variable sites, and third
codon positions comprised 67 % of the variable sites
(Table 2). There was a clear bias away from adenine resi-
dues at all codon positions. GC%, without accounting
for ambiguities is 47.3 %. When accounting for ambigu-
ities, GC% is 52.7 %. G-C skew is−0.051. There was no
clear pattern of GC bias in third codon positions (Fig. 2).
The compositional homogeneity test implemented in
PhyloBayes did not indicate compositional heterogeneity
(p = 0.11). The principal component analysis (PCA) of the
amino acid frequencies did not point to compositional
artifacts (not shown). We removed Pholidicthys from the
PCA because of its large amount of missing data. The full
data matrix is available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.r4553.
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Fig. 1 Number of loci captured, and proportion of total captured loci, in each of the five homolog sets

Eytan et al. BMC Evolutionary Biology  (2015) 15:113 Page 3 of 20

http://dx.doi.org/10.5061/dryad.r4553


Table 1 Species included in this study, as well as summary statistics from the Anchored Hybrid Enrichment protocol, for each species in the final assembly

Family Species Total number
of reads

Number of
contigs

Reads in
contigs

Enrichment
efficiency

Number of loci
captured

Average locus
length

% Reads in
assembly

Coverage (reads)
per locus

YFTC
number

Voucher

Atherinopsidae Menidia menidia 9,987,658 763 345,563 273 262 853 3.5 1,319 13569 YPM
20542

Pseudomugilidae Pseudomugil
signifer

13,797,820 700 295,723 228 260 803 2.1 1,137 21580 YPM
25209

Aplocheilidae Aplocheilus
lineatus

8,027,160 853 414,328 307 274 788 5.2 1,512 17777 YPM22279

Fundulidae Lucania goodei 7,928,592 686 242,710 354 247 771 3.1 983 11543 PW1591

Belonidae Strongylura marina 10,242,876 685 282,845 270 274 831 2.8 1,032 23716 Tissued
whole

Chaenopsidae Acanthemblemaria
spinosa

11,755,272 722 374,487 311 270 955 3.2 1,387 12081 PW 1667

Tripterygiidae Enneanectes
altivelis

10,596,644 837 549,827 464 271 843 5.2 2,029 3249 No
Voucher

Ambassidae Ambassis
urotaenia

13,327,538 1,012 640,383 219 299 984 4.8 2,142 18168 YPM
23178

Cichlidae Heros
appendictulatus

11,207,474 1,247 404,006 323 257 686 3.6 1,572 19986 ROM
84294

Cichlidae Retroculus
xinguensis

9,444,720 1,059 315,487 299 223 623 3.3 1,415 11437 PW 227

Cichlidae Ptychochromis
grandidieri

10,073,544 756 341,896 304 280 878 3.4 1,221 11469 PW 664

Cichlidae Etroplus maculatus 12,618,044 797 392,307 278 272 875 3.1 1,442 11521 PW 1333

Embiotocidae Embiotica jacksoni 10,992,132 849 600,890 445 293 950 5.5 2,051 17736 PW 2497

Gobiesocidae Diademichthys
lineatus

11,351,084 968 500,858 431 265 921 4.4 1,890 21699 YPM
25215

Gobiesocidae Gobiesox
maeandricus

10,827,390 741 462,089 417 250 924 4.3 1,848 15672 SLU-TC
022

Grammatidae Gramma loreto 9,002,262 769 384,082 365 275 865 4.3 1,397 21700 YPM
25216

Mugliidae Mugil cephalus 11,200,296 902 416,341 263 282 833 3.7 1,476 11546 PW 1602

Opistognathidae Opistognathus
aurifrons

9,642,318 782 723,920 648 275 867 7.5 2,632 21682 USNM
334483

Pholidichthidae Pholidichthys
leucotaenia

9,194,340 496 116,744 114 164 604 1.3 712 11559 PW 1659

Plesiopidae Plesiops
coeruleolineatus

10,783,068 1,122 540,273 449 290 814 5.0 1,863 11481 PW 1012

Polycentridae Polycentrus
schomburgki

11,935,280 809 440,262 360 280 873 3.7 1,572 12472 PW 1818B
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Table 1 Species included in this study, as well as summary statistics from the Anchored Hybrid Enrichment protocol, for each species in the final assembly (Continued)

Pomacentridae Microspathodon
bairdii

12,219,356 899 529,780 300 305 971 4.3 1,737 21686 YPM
25208

Pomacentridae Pomacentrus
nigromanus

11,243,642 798 421,306 274 290 886 3.7 1,453 12089 PW 1688

Pseudochromidae Congrogadus
subducens

9,884,860 716 334,900 234 275 846 3.4 1,218 18745 KU 29884

Pseudochromidae Pseudochromis
fridmani

9,273,084 1,120 564,750 421 292 859 6.1 1,934 23718 ANSP
191950

Bovichtidae Bovichtus diacanthus 11,205,486 783 493,034 465 286 873 4.4 1,724 3477 No
Voucher

Eleginopidae Eleginops
maclovinus

13,566,224 910 605,955 473 291 862 4.5 2,082 7700 YPM
16549

Anomalopidae Anomalops
katoptron

11,624,378 901 591,926 365 318 948 5.1 1,861 13820 YPM
20676

Monocentridae Monocentrus reidi 15,532,916 923 627,278 289 311 951 4.0 2,017 22123 FMNH
107283

Members of Ovalentaria are highlighted in bold
YFTC Yale Fish Tissue Collection number. Voucher codes: ANSP Academy of Natural Sciences of Philadelphia, FMNH Field Museum of Natural History, KU University of Kansas, PW Research Collection of Professor Peter
Wainwright, UC Davis, ROM Royal Ontario Museum, USNM National Museum of Natural History
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The length of the individual alignments ranged between
450 and 1605 bp, with a mean of 774 bp (Additional file 1:
Table S1). The percentage of missing data for each of the
loci, without considering indels, ranged from 1.06 to
25.87 % (Additional file 1: Table S1). When considering
only trailing end gaps and missing loci as missing data, the
entire concatenated matrix was 90.3 % complete. This

decreased to 89.5 % complete when considering indels. The
matrix was 96.6 % complete for the number of loci present
out of the total 107. The percentage of missing data, aver-
age ungapped locus length, ungapped alignment length,
and percent presence in the full dataset varied by species
(Table 3). The differences in missing data were substantial,
ranging from 2.8 % missing for Anomalops katoptron to
41 % missing for Pholidichthys. Two of the loci that were
captured with AHE are frequently used in fish phyloge-
netics: Rag1 and sidkey. A full list of the loci with their cor-
responding best BLAST search results can be found in
Additional file 2: Table S2.

Phylogenetic analyses
Partitioning by codon had a much lower AIC score than
partitioning by gene (Δ AIC = 38907). The average boot-
strap support for the concatenated analyses differed

Table 2 The number of variable sites in the concatenated
dataset, for the whole matrix and for each codon position

Number of
sites

Number of constant
sites

Number of variable
sites

Whole matrix 82782 47211 35571

1st position 27594 20421 7173

2nd position 27594 23114 4480

3rd position 27594 3676 23918

Fig. 2 Concatenated maximum likelihood phylogeny inferred using RAxML, from the full 29 species, 107 locus dataset, partitioned by codon
position. Shapes and colored circles represent bootstrap support for a given node. Higher-level named clades are noted. Percent GC of third
codon positions is listed for each species. Note that Pseudochromidae is not a clade
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Table 3 The amount of missing data, by species

Family Species Percent missing data including
trailing ends and indels

Number
of loci

Percent presence
in matrix

Ungapped
alignment length

Ungapped
locus length

Atherinopsidae Menidia menidia 14.4 98 91.6 70,824 723

Pseudomugilidae Pseudomugil
signifer

10.9 104 97.2 73,735 709

Aplocheilidae Aplocheilus
lineatus

8.4 105 98.1 75,857 722

Fundulidae Lucania goodei 21.4 95 88.8 65,080 685

Belonidae Strongylura marina 9.0 106 99.1 75,367 711

Chaenopsidae Acanthemblemaria
spinosa

13.0 99 92.5 72,021 727

Tripterygiidae Enneanectes
altivelis

13.1 102 95.3 71,916 705

Ambassidae Ambassis urotaenia 3.8 107 100.0 79,646 744

Cichlidae Heros
appendictulatus

20.5 102 95.3 65,805 645

Cichlidae Retroculus
xinguensis

28.8 104 97.2 58,933 567

Cichlidae Ptychochromis
grandidieri

6.1 106 99.1 77,747 733

Cichlidae Etroplus maculatus 8.3 104 97.2 75,914 730

Embiotocidae Embiotica jacksoni 5.0 105 98.1 78,663 749

Gobiesocidae Diademichthys
lineatus

15.1 94 87.9 74,290 748

Gobiesocidae Gobiesox
maendricus

9.5 100 93.5 74,914 749

Grammatidae Gramma loreto 3.9 106 99.1 79,574 751

Mugliidae Mugil cephalus 8.0 105 98.1 76,200 726

Opistognathidae Opistognathus
aurifrons

13.1 102 95.3 71,916 705

Pholidichthidae Pholidichthys
leucotaenia

41.0 97 90.7 48,818 503

Plesiopidae Plesiops
coeruleolineatus

6.9 105 98.1 77,035 734

Polycentridae Polycentrus
schomburgki

4.1 106 99.1 79,382 749

Pomacentridae Microspathodon
bairdii

3.0 106 99.1 80,210 757

Pomacentridae Pomacentrus
nigromanus

3.4 107 100.0 80,008 748

Pseudochromidae Congrogadus
subducens

5.4 105 98.1 78,329 746

Pseudochromidae Pseudochromis
fridmani

5.1 104 97.2 79,601 756

Bovichtidae Bovichtus
diacanthus

3.9 107 100.0 79,562 744

Eleginopidae Eleginops
maclovinus

13.2 100 93.5 71,885 719

Monocentridae Monocentris reedi 2.9 106 99.1 80,413 759

Anomalopidae Anomalops
kataptron

2.8 107 100.0 80,501 752

Average 10.5 103 96.5 74,108 717
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among the partitioning schemes, ranging between 83 %
and 76 % (Table 4). Partitioning by gene had the highest
average bootstrap support, while phylogenetic analysis of
the amino acid translation was lowest. The MP-EST ana-
lysis had an average bootstrap support of 69 %. The trees
inferred from the full datasets, as well as the species tree,
had poor support for the backbone of the phylogeny,

with most bootstrap values being less than or close to
50 % (Figs. 2, 3, 4 and 6, Additional file 3: Table S3,
Additional file 4: Figure S1, and Additional file 5:
Figure S2). However, there were sets of clades that
were consistently resolved with high support in all the
trees including Ovalentaria, monophyly of cichlids and
Pholidichthys, the Atherinomorpha, the bleniimorphs,
the Blenniiformes, and the Pomacentridae (damselfishes).
How these clades relate to one another, or to the other taxa
in the analysis was not resolved, as there was very low boot-
strap support for nearly all of the other nodes in the tree
(Figs. 2, 3, 4 and 6; Additional file 3: Table S3, Additional
file 4: Figure S1, and Additional file 5: Figure S2). This in-
cluded the Pseudochromidae (dottybacks), which did not
form a clade when using the full matrix datasets or the spe-
cies tree analysis, but was resolved as monophyletic in the
phylogenies inferred from the dataset with the 3rd codon

Table 4 Average bootstrap support and log likelihoods for the
different partitioning strategies and analytical methods

Inference strategy Log likelihood Average bootstrap support

By Gene −653571.169 83

By Codon Position −634117.808 80

3rd Positions Removed −220968.821 77

Amino Acid Translation −230313.297 76

MP-EST n/a 69

Fig. 3 Concatenated maximum likelihood phylogeny inferred using RAxML, from the full 29 species, 107 locus dataset, with 3rd codon positions
removed. Shapes and colored circles represent bootstrap support for a given node. Higher-level named clades are noted. Note that Pseudochromidae is a
clade, albeit with poor support
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positions removed and in the tree resulting from analysis of
the amino acid matrices, albeit all with poor support (Figs. 3
and 4, and Additional file 5: Figure S2). However, the tree
inferred using PhyloBayes provided strong support for this
clade (Fig. 5).
The monophyly of Ovalentaria and the clade containing

cichlids and Pholidichthys were supported with 100 % boot-
strap support (Figs. 2, 3, 4, 5 and 6, Additional file 3:
Table S3, Additional file 4: Figure S1, and Additional
file 5: Figure S2). Relationships within Atherinomorpha
and Blenniimorpha varied in support. While atherino-
morph monophyly was supported with high bootstrap
scores, the interrelationships of the constituent lineages
were less well resolved. The Beloniformes (halfbeaks
and flying fishes) and Atheriniformes (silversides) were
resolved as a clade in all the concatenated analyses
(Figs. 2, 3, 4 and 5, Additional file 3: Table S3, Additional

file 4: Figure S1, and Additional file 5: Figure S2), but the
bootstrap support was <70 % when using the full dataset.
However, support for this relationship increased when 3rd
codon positions were removed, or when amino acids were
analyzed, respectively (supplementary Figs. 3 and 4,
Additional file 4: Figure S1). The species tree resolved
the Beloniformes nested in Atheriniformes, albeit with
low bootstrap support (Fig. 3). In all analyses of the full
dataset Beloniformes and Atheriniformes were resolved as
a clade that is the sister lineage of Cyprinodontiformes.
The Blenniimorpha and Blenniformes were monophy-

letic with 100 % bootstrap support in all analyses (Figs. 2,
3 and 5, Additional file 3: Table S3, Additional file 4:
Figure S1, and Additional file 5: Figure S2). However,
there was poor support for a sister relationship between
gobiesocids (clingfishes) and blenniiforms in the species
tree analysis (<70 %), but there was stronger support in the

Fig. 4 Concatenated maximum likelihood phylogeny inferred using RAxML, from the full 29 species, 107 locus dataset, converted to amino acid
sequences, under the JTT substitution model. Shapes and colored circles represent bootstrap support for a given node. Higher-level named clades
are noted. Note that Pseudochromidae is a clade, albeit with poor support
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phylogenies resulting from analyses of the concatenated
dataset. A notable difference between the species tree and
phylogenies inferred from the concatenated dataset was the
relationship between grammatids and opistognathids (jaw-
fishes). In the phylogenies inferred from the concatenated
dataset Gramma loreto and Opistognathus aurifrons were
not monophyletic; however, they were resolved as a clade in
the species tree.
The phylogeny inferred from the dataset with reduced

taxon sampling resolved the monophyly of cichlids and
Pholidicthys, monophyly of Atherinomorpha, the sister
relationship of Blenniiformes and Gobiesocidae, and
monophyly of the Blenniimorpha, with all nodes sup-
ported with a 100 % bootstrap value (Fig. 6). The only
difference between this reduced dataset and the other
matrices was that Cyprinodontiformes and Atherini-
formes were resolved as a clade with strong bootstrap
support. The phylogeny inferred from the dataset with

reduced sampling demonstrates that the number of taxa
sampled in the complete matrix was not the driver of
poor node support at the base of the Ovalentaria tree.
All other relationships in the tree were poorly resolved,
as was found with the full datasets.
The phylogeny inferred using PhyloBayes (Fig. 5) pro-

vided strong support for the clades listed above, and also
resolved a monophyletic Pseudochromidae. It had high
support for some of the backbone nodes of the tree, yet it
differed topologically from all the trees inferred using max-
imum likelihood and species tree inferences. The results of
the cross-validation test (see Methods) confirmed that the
CAT model provided a better fit to the amino acid data
than the JTT model (Additional file 6: Figure S3).

Effect of gene sampling on phylogenetic resolution
When looking at the rarefaction curves, the average global
bootstrap support value started at 64 % and slowly

Fig. 5 Concatenated phylogeny inferred using the CAT Bayesian mixture model, implemented in PhyloBayes. Shapes and colored circles represent the
posterior probability for a given node. Higher-level named clades are noted. Note that Pseudochromidae is a clade, with good support
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increased as more loci were added, plateauing at 78–80 %
once 35 loci were included (Fig. 7). Bootstrap support for
monophyly of cichlids, atherinomorphs, and Blenniimorpha
was over 90 % with the inclusion of five loci and reached
100 % when ten loci were sampled. Bootstrap support for
the clade containing Pholidicthys and cichlids and mono-
phyly of Blenniiformes increased as loci were added and
both nodes were supported with 100 % bootstrap scores
once 55 loci were included (Fig. 7). Support for a monophy-
letic Pseudochromidae was low when few loci were in-
cluded and decreased to zero once 30 loci were added.
Similarly, support for a clade containing gobiesocids and
tripterygiids (triplefin blennies) quickly went to zero as
more loci were included. The rarefaction curve that tracked
number of nodes with bootstrap values appeared to reach a
plateau, although the number of nodes with greater than
50 % bootstrap support was not stable (Fig. 8). The number
of nodes with greater than 70 % and 90 % bootstrap

support plateaued with the inclusion of 30 loci, although
there was a slight uptick in the 70 % and 90 % nodes when
all 107 loci were included (Fig. 9).

Discussion
The promise of phylogenomics is that the ability to col-
lect many orthologous loci for taxa of interest will in-
crease the resolution of the Tree of Life, even for nodes
that have historically been difficult to resolve with cer-
tainty. Consistent with other studies [35] we show that
this is not necessarily the case for all clades. Results
from our analyses provide independent confirmation of
Ovalentaria monophyly, and also strongly support the
phylogeny that used a much smaller set of loci, includ-
ing the resolution of the enigmatic engineer gobies
(Pholidichthys) as the sister lineage of cichlids, thus
proving the robustness of the loci captured using AHE.
However, even with a large amount of sequence data,

Fig. 6 Species tree inferred using MP-EST from the 107 locus dataset. Three outgroup taxa were removed for this analysis, leaving 26 species. Indi-
vidual gene trees were inferred using RAxML and partitioned by codon position. Shapes and colored circles represent bootstrap support for a
given node. Higher-level named clades are noted. Note that Pseudochromidae is not a clade and Atheriniformes is paraphyletic
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and after accounting for paralogous gene copies, both
maximum likelihood and species tree analyses failed to
resolve many nodes in the Ovalentaria phylogeny, while
the PhyloBayes analysis of the amino acid matrix was
more successful. Our results support the growing recog-
nition that the application of phylogenetic models to
phylogenomic scale datasets may not always capture the
increased complexity that underlies the data [31, 36,
37]. For example, we found that at a certain point in-
creasing the number of loci in the dataset did not result
in increased average node support. Our results under-
score that the advent of phylogenomics must also be ac-
companied by methods to better analyze these complex
datasets [38], as some systematic errors in phyloge-
nomic datasets may be difficult to avoid.

Ovalentaria Interrelationships
An advantage of inferring phylogenies from multiple loci
is that the repeatability of clades among individual gene
trees provides confidence in the phylogenetic resolution
[39]. Our results confirmed the results of previous stud-
ies that support monophyly of Ovalentaria that was inti-
mated in phylogenetic analyses using mitochondrial or
nuclear genes [34, 39–42]. Our results also provide an
independent corroboration of the monophyly of Pholi-
dichthys and cichlids [7, 8, 33], which was resolved with
100 % bootstrap support after using just a small portion
of the total number of markers (Fig. 7). The inclusion of
the cichlids as a positive control was successful, as the
cichlid interrelationships agreed with previous phylogen-
etic hypotheses [43, 44], although no African cichlid

Fig. 7 Concatenated maximum likelihood phylogeny, inferred using RAxML from the 107 locus dataset with reduced taxon sampling (21 species),
partitioned by codon position. Shapes and colored circles represent bootstrap support for a given node. Higher-level named clades are noted. Note
the sister relationship of Cyprinodontiformes and Atheriniformes
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species were sampled in the AHE dataset. Notably, none
of the trees we inferred supported a “chromide” clade of
damselfishes, surfperches, and cichlids. The existence of
a chromide clade has been a longstanding phylogenetic
hypothesis [33, 45], but we find no evidence for it here.
However, the PhyloBayes tree did recover a monophy-
letic pseudochromid clade. However, of all recent large-
scale analyses of percomorphs, this was the only one to
do so [7, 8, 33]. Although outside the scope of this study,
investigating the cause of this incongruence between our
and other studies represents an important step towards
resolving this node in the percomorph tree of life.
Phylogenetic analyses of the AHE dataset resolved

Atherinomorpha as a clade, confirming both morpho-
logical and molecular studies that have long recognized
their monophyly [8, 33, 40, 46–50]. However, different
analyses resulted in different relationships among the
Beloniformes, Atheriniformes, and Cyprinodontiformes.
The phylogenies inferred using maximum likelihood re-
solved Atheriniformes and Beloniformes as a clade
(Figs. 2, 3 and 4, Additional file 3: Table S3, Additional
file 4: Figure S1, and Additional file 5: Figure S2), while
the analysis with reduced taxon sampling resolved
Cyprinodontiformes and Atheriniformes as a clade with
100 % bootstrap support (Fig. 6). The phylogenetic dis-
cordance observed among these analyses, as well as

Fig. 8 Rarefaction curves displaying the increase in average bootstrap support for maximum likelihood-inferred phylogenies as more data are added to
the phylogenetic matrices. The average bootstrap support as data was added to the phylogenetic matrices was also tracked for the following nodes: the
monophyly of Cichlidae, the monophyly of Atherinomorpha, the most recent common ancestor (MRCA) of Pholidichthys and Cichlidae, the
MRCA of chaenopsid blennies and tripterygiid blennies (Blenniiformes), a MRCA of Gobiesocidae and Tripterygiidae, the monophyly of the
Pseudochromidae, and the MRCA of Grammatidae, Opistognathidae, Gobiesocidae, and Blenniiformes (Blenniimorpha)

Fig. 9 Number of nodes out of the total nodes in the maximum
likelihood-inferred phylogenies supported with different bootstrap
proportions as more data was added to the analyses
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between ours and those of the previous morphological
and molecular studies [8, 33, 40, 46–50] may be due to
gene tree heterogeneity and deep coalescence among the
major lineages of Atherinomorpha.
The Blenniimorpha has only recently been delimited

through the use of molecular data [7, 8, 33]. Our study is
an independent corroboration of this result. Some of the
interrelationships in the Blenniimorpha were initially hy-
pothesized from analyses of morphological and molecular
data [42, 51–53]. The monophyly of the Blenniiformes has
been called into question [7], but we find that they form a
clade sister to gobiesocids, in agreement with other mo-
lecular and morphological studies [8, 33, 39, 51, 54].

The anchored hybrid enrichment dataset
The anchored hybrid enrichment method provided DNA
sequences from hundreds of loci. However, for any indi-
vidual species there were ca. 50 % as many markers than
the 512 loci from Lemmon et al. (2012). This result,
however, is not unexpected. The Lemmon et al. (2012)
study found a similar result when sequencing the killi-
fish, Heterandria formosa, which is a member of Ovalen-
taria and shares common ancestry exceeding 250 Ma
with the model organism used to make the probe set,
Danio rerio [6]. Thus, our capture results are within the
expected range, given the divergence time between our
clade of interest and the model teleost used to design
the kit. Successful enrichment depends on the diver-
gence time to the model species [22, 55]. The best way
to deal with low capture rates is to design probe sets
using taxa that are closer phylogenetically to the clade
being investigated [22]. These new capture kits have
already successfully completed numerous fish data sets.
Some species, such as Pholidicthys tended to have short
sequence lengths. In these cases the only area of the
locus sequenced was primarily the anchor region in the
center. This is because for species with poor capture ef-
ficiency, the coverage will be lower. Since the coverage
is highest in the probe region and lower in the flanks,
low coverage will cause the flanks to drop out first
(e.g., primarily probe regions will remain). New probe
designs that use multiple neighboring anchor regions
should ameliorate this. The benefit of collecting data
using methods such as AHE is that there will be
enough loci captured that those that are poorly se-
quenced, or uninformative, can be eliminated from the
data matrix [22, 24].

The Performance of the AHE dataset
We collected over 80 kb of DNA sequence data in our
study. Nonetheless, there was a lack of phylogenetic reso-
lution among the major lineages of Ovalentaria. Other
studies have shown that adding more sequence data in-
creased node support, even in deep and rapid radiations

[17, 19, 20, 36, 56, 57]. In a similar situation to ours, and
with a similar number of taxa, McCormack et al. [9] used
a phylogenomic dataset to resolve interfamilial relation-
ships of Neoaves. They found that increasing their dataset
from 416 to 1541 loci significantly improved average max-
imum likelihood bootstrap support, which was already
high. However, there were still a substantial number of
poorly resolved nodes in their 1541 locus maximum likeli-
hood tree (Additional file 3: Table S3).
Wagner et al. [16] showed a striking example of the

power of large datasets. Using millions of base pairs of
DNA sequence data, collected using RAD-seq, they re-
solved the interrelationships among very recently di-
verged cichlid species. However, in their case they
needed ~300,000 bp of data before individual species
were reciprocally monophyletic. Support and resolution
increased nearly linearly until ~2,000,000 bp, when it
began to plateau. This result suggests that it may take a
very large amount of data to solve difficult phylogenetic
problems, far more than we have employed here. How-
ever, Wagner et al. (2013) were contending with very
shallow genetic divergences and rampant incomplete
lineage sorting between species. They were using a very
large proportion of these fishes’ genomes to extract a
signal of differentiation. In contrast, Ovalentaria con-
tains several well-differentiated lineages, but their inter-
relationships are poorly known because there is little
phylogenetic resolution among a set of short internodes
that may reflect a history of rapid lineage diversification.
However, it is also possible that these short internodes
are the result of shifts in rates of molecular evolution
across the tree [58].
In Ovalentaria, average support and number of nodes

supported plateaus at a relatively low value before the
majority of available loci are sampled (Figs. 7 and 8).
This pattern was also observed by Rodríguez-Ezpeleta
[59], which they attributed to systematic error leading to
non-phylogenetic signal. This may occur when se-
quences are saturated, causing a large number of homo-
plasious nucleotide substitutions, or when there is
model misspecification [31]. One of the pitfalls of phylo-
genomics is the potential for the inference of a strongly
supported, but erroneous, phylogeny because systematic
error increases as more data is used [24, 35]. Such error
does not appear to be confounding the support for
monophyly of major Ovalentaria lineages, as many of
these clades are consistently supported in several other
phylogenetic studies [8, 33, 34, 40, 42, 49, 54]. However,
stochastic error, systematic error and non-phylogenetic
signal can also lead to low node support [12, 59], as ob-
served in the lack of phylogenetic resolution among the
major lineages of Ovalentaria.
In the case of “stochastic error” it may have been that

the probe set used for Anchored Hybrid Enrichment
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most likely captured loci sharing similar attributes. The
similarity of these loci to one another could cause the
lack of resolution we have in our dataset, if they are all
biased. However, we find this to be unlikely, as other
studies using this method do not appear to show a clear
pattern of bias [60]. We qualify this by writing that with-
out sampling other classes of markers throughout the
genome, it is difficult to say for certain. However, our
rarefaction curves suggest that for certain approaches to
phylogenetic inference such as the likelihood analyses
used here, simply adding more loci, at least those cap-
tured using this first version of the Anchored Hybrid
Enrichment method, will not increase support after a
certain number of loci are added.

Systematic error?
Increased taxon sampling has been shown to increase the
accuracy and node support of phylogenetic trees [31, 61–
65]. In our study we tested the inverse of this: to deter-
mine if removal of taxa would lead to decreased support
at nodes (see Methods). With the exception of the interre-
lationships of the Atherinomorpha, it mostly did not
change node support. This is most apparent with the
monophyly of Pholidichthys and cichlids, an unexpected
relationship when first discovered, and one which may
have been due to the relatively large number of cichlids in
that study (Wainwright et al. [33]). Thus, the inclusion of
multiple cichlid species may be expected to account for
the high support of that node. Removing all but one cich-
lid had no effect on node support, indicating that adding
additional taxa for each of the Ovalentaria lineages would
not necessarily increase support for nodes at the base of
the tree (Fig. 7). This suggests that adding more taxa
would simply add more well-supported apical nodes to
each of the major Ovalentaria lineages, assuming we have
sampled all basal Ovalentaria lineages [19].
Another strategy to minimize non-phylogenetic signal is

to remove fast evolving sites, which will reduce the
number of characters affected by multiple substitutions
[12, 31, 36, 59, 66]. This is done by either substituting
slow-evolving for fast-evolving taxa, or removing third
codon positions [12, 67]. The problem of substantial
molecular evolutionary rate heterogeneity does not appear
to be present in the Ovalentaria AHE dataset. In fact, the
lineages and species with the longest reconstructed branch
lengths were resolved in well-supported clades that agree
with previous studies using different datasets, such as in
the Blenniimorpha. In addition, there was essentially no
change in the inferred phylogeny when 3rd codon posi-
tions were removed, but there was a decrease in average
bootstrap support (Additional file 4: Figure S1).
The remaining sources of systematic error are incor-

rect identification of orthologs and model misspecifica-
tion. The paralog picker was not perfect; there were still

alignments with apparent paralogous gene copies after
its application. Detection of non-orthologous loci is diffi-
cult, but can be automated to a certain degree, like we
have here [68, 69]. However, manual inspection of each
alignment and individual gene tree was still necessary to
filter out all the paralogous gene copies. This was time
consuming and will prove cumbersome as phylogenomic
datasets continue to increase in size.
Model misspecification is more difficult to address. It is

not clear which models are best for large, complex datasets,
especially those of coding sequence, or how to partition
these datasets. Our dataset was too large to use in Partition-
Finder [70], so we opted for several obvious partitioning
schemes and used the most complex substitution model for
each partition, as topological inference has been shown to
be robust to model over-parameterization [71]. However,
with phylogenomic data, the question of model adequacy
becomes increasingly relevant. More sophisticated substitu-
tion models such as the site-heterogeneous CAT model
[72] have been shown to deal well with non-phylogenetic
signal [12], and it did provide better results for our data
than the other models. It is not clear, though, if this was
due to a large proportion of non-phylogenetic signal in our
data, as there was no obvious trend towards this. Our re-
sults highlight the need for theoretical studies developing
new approaches for data modeling and investigations into
the influence of model misspecification in genomic scale
datasets [38].
An alternative source of conflict is that individual gene

histories can deviate from the true species tree, especially
when successive speciation events have been rapid, includ-
ing those at scales of deep evolutionary time [73]. The mo-
lecular phylogenies of Ovalentaria exhibit a signal of rapid
diversification among the major constituent lineages, that
is, short internodes at the base of the tree coupled with
long terminal branches [15]. This leads to the expectation
of heterogeneity among the individual gene trees [15]. The
poor resolution at the base of each of the Ovalentaria gene
trees appears to be due to a lack of signal in any one par-
ticular locus. As such, it appears that weak support at the
base of the Ovalentaria species tree is not due to significant
discordance among individual gene tree histories. However,
the gene trees would be discordant with little signal if they
just reflected a great deal of uncertainty. That said, that
discordance would not be reflected by a pattern of strong
support for alternate topologies. The method we used to
infer a species tree, MP-EST, takes as input individual gene
trees. This results in a species tree that is only as robust as
the gene trees provided. Nonetheless, there was clearly
phylogenetic signal for several major clades in each of the
individual gene trees, as much of the well-supported parts
of the species tree topology agreed with the concatenated
datasets (Figs. 2, 3, 4 and 5, Additional file 3: Table S3,
Additional file 4: Figure S1, and Additional file 5: Figure S2).
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Although there are cases where the low support in in-
dividual gene trees can be ameliorated by the concaten-
ation of all loci [74] this was not the case in our dataset.
While the difference in bootstrap support values be-
tween the species tree and those of the concatenated
ones suggested that the simple addition of data did help
to promote some increased resolution, the increased
bootstrap support values did not lead to high values for
previously poorly-supported clades. We believe the rea-
son to be that we simply have a very difficult phylogen-
etic problem that will be difficult to solve, as our
rarefaction curves suggest. Although future probe sets
that capture longer loci that may increase support for in-
dividual gene trees, and perhaps the entire concatenated
matrix, the increased resolution of the PhyloBayes based
topology suggests that better models, and not more data
are critical towards our ability to successfully resolve a
Genomic Tree of Life.

Conclusions
The phylogenetic analyses of more than 100 loci to infer
the relationships of the acanthomorph teleost clade Ova-
lentaria demonstrates that some, but not all, lineages
connected by short internodes may avoid resolution
under certain analytical conditions. The lack of reso-
lution among the major lineages of Ovalentaria did not
appear to result from a shortage of loci, as demonstrated
by the rarefaction curves. After accounting for paralo-
gous gene copies and attempting to minimize missing
data, we had substantially fewer loci than the 512 that
were targeted. This was not unexpected given the long
divergence time between Ovalentaria and the model
teleost used in this first version of the AHE capture kit,
as well as the teleost-specific whole genome duplication
event. The AHE dataset provided robust phylogenetic
inference, as it validated the results of previous phyloge-
nies that used different sets of markers. Our results
highlight the need for new models to accommodate in-
creasingly large and more complex phylogenomic data-
sets, as only one analytical method was able to provide
resolution of relationships across the Ovalentaria tree.
We hope that improved models, as well as new kit de-
signs and bioinformatic strategies for phylogenomic data
collection and analysis, will ultimately facilitate estima-
tion of well-resolved phylogenies of all clades in the Tree
of Life.

Methods
Taxon sampling
The phylogenies from Wainwright et al. [33] and Near
et al. [8] were used to choose species for this study. Taxa
were chosen so that they sampled all major lineages in
Ovalentaria, making sure to capture nodes deep in the
clade. In addition, several nodes with closely related

species were sequenced (Table 1). These served as positive
controls to help detect paralogous gene copies, as well as
to assess the effect of taxon sampling on node support
(see below). If we did have paralogs we might expect, for
instance, that the two damselfish species would fall out on
opposite ends of the tree with high support.

DNA extraction, library preparation, sequencing, read
assembly, assessment of paralogous loci, and pair-wise
sequence alignment
DNA was extracted from fish tissues preserved in 70–95 %
ethanol or were obtained from museum collections.
Genomic DNA was extracted from muscle or fin clips
using a DNeasy Tissue Extraction Kit (Qiagen, Valencia,
CA). Total amounts of DNA were measured using a Nano-
Drop (Thermo Scientific). Data were collected at the Cen-
ter for Anchored Phylogenomics at Florida State University
(www.anchoredphylogeny.com). Library preparation, en-
richment, sequencing, and the probe set used followed the
protocols of Lemmon et al. [22].
The reads from the sequencing run went through

three processing steps before they were used for phylo-
genetic analyses using in house programs written in Java
(Available from the Dryad Digital Repository: http://
dx.doi.org/10.5061/dryad.r4553) first an assembly step,
then use of an automated algorithm to filter out paralo-
gous loci, followed by assembly and manual curation of
contigs. The assembly was performed on all of the loci
simultaneously, with one seed/alignment per locus. First, a
set of reads for a given individual was mapped to a refer-
ence using spaced Kmers that allow for 45 % sequence di-
vergence. The best-matching read was chosen, and the
other reads were aligned to this best-matching read, with
a requirement of 95 % similarity in the overlapping region,
which had a minimum overlap of 20 bp. It is important to
note that reads coming from paralogous gene copies were
not typically aligned at this step. A majority-rule consen-
sus sequence was taken from this alignment, with the
minimal requirement of 2x coverage. This consensus se-
quence was used as the seed in the next step. An exten-
sion assembly was conducted in which each seed was
“grown” outward, using the reads that overlap with 95 %
agreement with the seed from the previous step. Another
consensus sequence was taken once the alignment could
no longer be “grown” outward, using reads that over-
lapped with 95 % agreement with the seed. This was done
using multiple passes through the read file, if necessary.
The raw read file was reduced in the last step by removing
the reads already present in the alignment. The process
outlined here was repeated N number of times, to produce
N consensus sequences, each representing different puta-
tively orthologous genes. A locus was considered “cap-
tured” if a consensus sequence length of >350 bp was
recovered in any of the assembly rounds.
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After the assembly step, orthologous genes were iden-
tified using a “paralog picker” algorithm. The “paralog
picker” is preferred because many other methods such
as OrthoMCL assume that the sequences are protein
coding [75]. Not all of the anchor loci are, so these
methods will not allow us to apply a consistent method
across all of our loci.
The steps of the paralog picker are as follows: First, a

reference individual was chosen, which was typically the
one that exhibited the best capture efficiency. Second,
the consensus sequences from each individual were
aligned to the reference individual’s sequences. Third,
we defined the first homolog set as the first reference se-
quence, which is the first homolog identified for individ-
ual 1 for the locus, and the sequences from each
individual that best aligned to the reference sequence.
Fourth, the sequences assigned to the first homolog set
were removed. Fifth, a second homolog set was defined
as the second reference, which may be the second copy
of a duplicated gene, and the sequences from each indi-
vidual that best aligned to that reference sequence (after
excluding those sequences that were chosen for the first
homolog set). Sixth, sequences assigned to the second
homolog set were removed. This six-step procedure was
repeated until all homolog sets were used up.
After execution of the “paralog picker,” multiple se-

quence alignments were conducted for each ortholog set
using MUSCLE [76], implemented in Geneious v5.6.4,
created by Biomatters. Available from http://www.
geneious.com/. Alignments with greater than two miss-
ing species were discarded and then trimmed at the 5′
and 3′ ends to reduce the amount of missing data. If
greater than a third of the taxa in the alignment had
missing data, then the data was trimmed until less than
half of the species had missing data.
Alignments were discarded unless they were at least 450

base pairs long, with 150 base pairs present for the species
in the alignment with the shortest sequence. Alignments
were manually curated to put all the sequences into open
reading frames. For each alignment, pairwise distances
among sequences were calculated to identify sequences that
exhibited unusually high divergences, which were removed.
Phylogenies were inferred from each locus using MrBayes

3.2 [77]. Two runs for each gene with four chains each were
performed, each for 10,000,000 generations. Default priors
on cladogenesis were used and the GTR+ Γ model of
nucleotide substitution was used for all runs, partitioning
by codon position. We decided on the GTR + Γ model by
running PartitionFinder on a subset of loci, but not all, to
reduce computational burden. The GTR+ Γ model was
inferred for these sequences. Convergence of the model pa-
rameters sampled by the chains was assessed using Tracer
v1.5 and convergence of topologies was assessed using the
“cumulative” and “compare” functions in AWTY [78].

Individual gene trees were inspected for the presence of
paralogous gene copies, primarily through unusual and
strongly supported phylogenetic resolutions or if a taxon
exhibited a very long branch in the gene tree compared to
other species. In all cases where there were putative paralo-
gous gene copies, the “offending” sequences were removed
from the alignment, and the locus was discarded if the edit-
ing resulted in more than two missing species. The refer-
ence sequence for each locus was then compared to
sequences in GenBank using BLAST searches [79].

Phylogenetic analyses
Phylogenetic trees were inferred using two methods: max-
imum likelihood analyses of a dataset where all genes were
concatenated and a species tree reconstruction. Four dif-
ferent partition schemes were applied to the sets of
concatenated alignments; partitioned by gene, partitioned
by codon position, portioned by gene with all third codon
positions removed, an alignment consisting of only 3rd
codon positions, and two different alignments of the
translated amino acid sequences. The AIC was used to de-
cide between partitioning by gene vs. by codon position
for further analyses (see below). We also analyzed the full
amino acid matrix using a Bayesian mixed model analysis,
implemented using the CAT model in PhyloBayes. We
summarized the PhyloBayes trees when the “maxdiff”
between the chains was <0.1. We further analyzed the
amino acid matrix in PhyloBayes through the use of a
compositional homogeneity test [80]. We also performed
a principle component analysis of the amino acid frequen-
cies to test for compositional artifacts. We removed Pholi-
dicthys from the PCA because of its large amount of
missing data.
We performed a statistical model comparison using

the cross-validation (CV) method available in Phylo-
Bayes to statistically test that the CAT model was a bet-
ter fit to the data than the JTT model. A learning and a
test set were generated by randomly splitting the original
alignment into 10 replicates made of 90 % and 10 % of
the original sites, respectively. Each 90 % dataset was
run with pb_mpi for 50,000 generations subsampling
every 10, with a burnin of 5000 and the specified model.
The 10 % datasets were then used to cross-validate each
run using readpb_mpi’s cv option.
We tested the effect of taxon sampling on node sup-

port by removing closely related species from the dataset
(Additional file 7: Table S4). The new dataset contained
one cichlid, one gobiesocid, one bleniiform, one poma-
centrid, and one of each of the three atherinomorph lin-
eages, for a total of 21 species in the subsampled
dataset, which was partitioned by codon position. The
phylogenies for the concatenated nucleotide sequence
datasets were inferred by using RAxML 7.2.6 with the
default GTR+ Γ model for each of the nucleotide data
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partitions and JTT + Γ model for the amino acid align-
ment, the latter chosen using ProtTest v3.4 [81, 82]. We
also inferred a tree using the Dayhoff model of AA sub-
stitution, as it is more sensitive to compositional bias.
Support for nodes in the RAxML inferred trees was
assessed using a rapid bootstrap analysis (option -f a)
with 500 replicates. Note that the version of RAxML we
used in our analyses no longer overrides the gamma model
when doing a rapid bootstrap, and does not default to the
CATapproximation.
We tested the effect of step-wise addition of more data

on average node support using rarefaction curves con-
structed for the concatenated datasets. These rarefaction
curves were made by randomly sampling from the total
pool of loci in our dataset. We partitioned by codon pos-
ition because this allowed us to make use of all the data
while minimizing the number of parameters requiring esti-
mation. The random sampling was done in increments of
five loci to make increasingly longer concatenated datasets.
The random sampling was performed twenty times for
each sampled pool of loci and average bootstrap support
for each tree was calculated for each sampling pool. We
also calculated average bootstrap support for certain key
nodes in each of the datasets including the most recent
common ancestor (MRCA) of Pholidichthys and Cichlidae
[7, 8, 33], the MRCA of chaenopsid blennies and triptery-
giid blennies [8, 33, 54], a MRCA of gobiesocids and trip-
terygiids (Betancur-R. et al. 2013), the monophyly of the
Pseudochromidae because previous results have not re-
solved them as a clade [8, 33], and the MRCA of the clade
containing Grammatidae, Opistognathidae, Gobiesocidae
and Blenniformes [6, 7, 33]. As “positive controls” the
monophyly of both Cichlidae and Atherinomorpha were
tracked. In this case, “positive controls” were groups of
fishes that have been accepted to be clades. This was done
to ensure that the results of the rarefaction curve were
robust.
In addition to average node support, rarefaction curves

were constructed for average number of nodes with
bootstrap values greater than 50, 70, and 90 % bootstrap
support. Code for constructing the randomized datasets,
as well as for distributing large numbers of RAxML jobs
across numerous computer nodes is available on Dryad
(accession pending).
Species trees were inferred using MP-EST [83]. MP-

EST takes as input maximum likelihood estimated
gene trees. Partitioned maximum likelihood analyses
using RAxML were used to infer each gene tree. MP-
EST requires rooted trees and can only use one out-
group. We used Bovichtus diacanthus as the rooted
outgroup, removing the three other outgroup species.
A species tree was inferred using MP-EST from the
bootstrapped gene trees, which incorporates phylogen-
etic uncertainty into the analysis. The resulting set of

species trees were summarized using SumTree, imple-
mented in Dendro-Py [84].
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