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A peacock bass (Cichla) functional novelty relaxes a 
constraint imposed by the classic cichlid pharyngeal jaw 
innovation
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Innovations may provide access to new resources but often result in significant trade-offs. Pharyngognathy is a 
classic pharyngeal jaw innovation in which the left and right lower pharyngeal jaw (LPJ) bones are united into a 
single structure, producing a strong bite but reduced gape. Throughout cichlids, pharyngeal suturing occurs along 
the entire medial border between LPJ bones, except in peacock bass (Cichla), where these bones are connected by 
ligaments only in their anterior region. We show that this limited attachment permits the jaw bones to spread apart 
and we link this feature to an increase in pharyngeal gape that is comparable to non-pharyngognathous species. The 
capacity of the LPJ bones to spread apart is strongest in juveniles and is mostly lost during development. Juvenile 
Cichla exhibit size-specific pharyngeal gape similar to non-pharyngognathous percomorphs; however, adults exhibit 
pharyngeal gape on par with other predatory cichlids. Relaxation of pharyngeal suturing offsets a major deleterious 
consequence of pharyngognathy by reducing gape limitation and we propose this may accelerate the ontogenetic 
transition to piscivory. Partial reversal of the classic cichlid pharyngeal jaw innovation highlights the functional 
trade-offs that often accompany innovations and may be a major cause of variation in their macroevolutionary 
consequences.

ADDITIONAL KEYWORDS:  adaptation – constraint – gape – morphology – piscivory – trade-off.

INTRODUCTION

Functional trade-offs impose a constraint on 
organismal evolution (Futuyma & Moreno, 1988; 
Koehl, 1996). A trade-off between force transmission 
and speed is central to many anatomical systems, 
ranging from feeding mechanics in fishes (Westneat, 
1994; 1995) to powered flight in birds (Tobalske 
et al., 2003), and can have a strong influence on 
diversification (Collar et al., 2009; Wright et al., 2016; 
Burress et al., 2020). Functional innovations may 
permit organisms to achieve substantially enhanced 
performance that results in access to new resources 
(Simpson, 1953; Liem, 1973; Kingsolver & Koehl, 1994; 
Bond & Opell, 1998). However, an interesting feature 
of innovation is that functional break-throughs 
usually come with performance trade-offs, rather 
than universal benefits. While innovations may pave 
the way to exploitation of novel resources, trade-offs 

can make use of other resources less viable (McGee 
et al., 2015). Although there are widespread trade-offs 
in organismal evolution, these are rarely explicitly 
discussed in the context of major innovations despite 
that such trade-offs have the potential to influence the 
macroevolutionary impacts of the innovation.

All ray-finned fishes have a pharyngeal jaw 
apparatus formed from modified gill-arch elements that 
assists with prey processing (Lauder & Wainwright, 
1992; Fig. 1). A derived condition of the pharyngeal jaw 
apparatus, pharyngognathy, is regarded as a major 
innovation that expanded the functional repertoire of 
several ecologically diverse lineages of fishes, including 
marine wrasse and freshwater cichlids (Liem, 
1973; Liem & Sanderson, 1986). Pharyngognathy 
is characterized by three key modifications to the 
pharyngeal jaw apparatus (Liem, 1973; Stiassny, 1987; 
Stiassny & Jensen, 1987): (i) the left and right lower 
pharyngeal jaw bones, the fifth ceratobranchials, are 
united into a single structure, (ii) the upper pharyngeal 
jaws articulate directly against the neurocranium, and 
(iii) a muscular sling suspends the lower pharyngeal 
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jaw directly from the neurocranium. In combination, 
these features facilitate exploitation of hard and tough 
prey by providing a strong bite. In all cichlids, except 
Cichla, the left and right lower pharyngeal jaw bones 
are united by a suture along their entire medial border 
(Stiassny, 1981; Casciotta & Arratia, 1993; Fig. 1). In 
many species, especially those that consume hard and 
tough prey, this suture is complex and interdigitating, 
increasing the contact area between the bones (Hulsey, 
2006) and presumably increasing the strength of the 
suture (Jaslow, 1990). In Cichla, only the anterior 
portion of the lower pharyngeal jaw bones are united by 
a short, straight suture (Stiassny, 1982, 1987; Stiassny 
& Jensen, 1987; Fig. 1). The functional consequences of 
this reduced suture is unknown; however, it has been 
hypothesized to permit the lower pharyngeal jaws 
to spread apart to accommodate larger prey such as 
fishes (Stiassny, 1982; Wainwright et al., 2012).

The ontogenetic transition to piscivory is a critical 
period for many predatory fishes. Transitioning 
at a small body size can increase growth rate and 
reduce mortality (Werner & Gilliam, 1984). Body size 
plays a prominent role in mediating this niche shift 
because small predators have correspondingly small, 
more restrictive oral and pharyngeal jaw gapes, and 
subsequently have prolonged handling time consuming 
large prey or are prevented from consuming large 
prey altogether (Mittelbach & Persson, 1998). The 
horizontal gape of the oral jaws is a strong predictor 
of maximum prey size (Mihalitsis & Bellwood, 
2017); however, pharyngognathous fishes are further 
limited by a reduced pharyngeal jaw gape due to 
the union of the lower pharyngeal jaws into a single 
structure that prevents the two bones from spreading 
apart to accommodate large prey. Thus, a reduced 

pharyngeal gape is a consequence of pharyngognathy. 
Restricted pharyngeal gape and reduced swallowing 
performance are thought to have facilitated the 
extinction of piscivorous cichlids in Lake Victoria 
following the introduction of a non-pharyngognathous 
competitor (McGee et al., 2015). Thus, the evolution of 
pharyngognathy imposes a functional trade-off—an 
expanded capacity to eat hard or tough prey such as 
molluscs or algae, but reduced capacity to feed on large 
prey items such as fishes.

In this study, we explore the functional consequences 
of reduced suturing of the lower pharyngeal jaw in 
Cichla. We test the hypothesis that the short, straight 
suture that connects the left and right lower pharyngeal 
jaws permits these bones to spread apart and increase 
the pharyngeal gape. We further explore whether 
this novelty offsets the pharyngeal gape trade-off of 
pharyngognathy associated with consuming large fish 
prey. We are particularly interested in the possible role 
of pharyngeal jaw spreading in juvenile individuals, 
around the ontogenetic shift to piscivory. We also 
ask whether this feature permits Cichla to achieve 
a pharyngeal gape similar to those of several non-
pharyngognathous piscivores to determine whether 
there is a functional reversal to pharyngeal gape sizes 
associated with the non-pharyngognathous condition. 
To address these questions, we first measured mobility 
of the lower pharyngeal jaw and pharyngeal and oral 
gape across an ontogenetic series of Cichla ocellaris 
and two other cichlids that represent independent 
evolutionary origins of piscivory but have complete 
pharyngeal sutures (Crenicichla lugubris and 
Parachromis dovii), as well as a non-cichlid, non-
pharyngognathous piscivore (Micropterus salmoides) 
that has been described as a North American 
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Figure 1. Pharyngeal jaws of percomorph fishes: (A) the widespread percomorph condition in which the left and right fifth 
ceratobranchials are separate elements (depicted by Micropterus salmoides), (B) the derived pharyngognathous state in 
which the ceratobranchials are sutured along their entire medial border into a single element (depicted by Retroculus), and 
(C) the modified Cichla pharyngeal jaw in which the ceratobranchials are united by a short suture at their anterior end 
(depicted by Cichla ocellaris).
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ecomorphological counterpart to Cichla (Norton & 
Brainerd, 1993). Finally, we compared pharyngeal 
gapes of juvenile Cichla to a broad spectrum of 
pharyngognathous and non-pharyngognathous 
piscivores sampled from across percomorph fishes.

MATERIALS AND METHODS

Gape and pharynGeal jaw measurements

We measured oral and pharyngeal jaw gape across 
an ontogenetic series of Cichla ocellaris (N = 28; 
2.7–27.0 cm standard length (SL)), two distantly-
related Neotropical cichlid piscivores: South American 
Crenicichla lugubris (N = 29; 5.4–25.1 cm SL) and 
middle American Parachromis dovii (N = 17; 2.5–
14.1 cm SL), and a non-pharyngognathous piscivore: 
North American Micropterus salmoides (N = 37; 
6.2–32.5 cm SL). These are large-bodied species that 
principally eat fish as adults (Table 1). The horizontal 
gape of the oral jaws is a strong predictor of maximum 
prey size that fish are able to feed on (Mihalitsis & 
Bellwood, 2017); therefore, we used this measure to 
characterize oral gape. Measurements were taken on 
anesthetized individuals immediately after a lethal 
dose of MS-222 using digital calipers to the nearest 
0.1 mm and defined as the maximum horizontal 
distance that could pass through the oral jaws and into 
the buccal cavity. Pharyngeal jaw gape was measured 
with a series of circular cross-section rods and defined 
as the maximum diameter that could easily pass 
through the upper and lower pharyngeal jaws and 
into the oesophagus (Burress et al., 2015; McGee et al., 
2015). For Cichla specimens, the lower pharyngeal jaw 
was then removed by dissection. The distance between 
the posterior tips of the left and right lateral processes 
was measured at rest and then again after being 
gently spread to the maximum extent permitted by 
the suture. In small specimens, the lateral processes 
were somewhat flexible, a feature that may contribute 
to the mobility of the lower pharyngeal jaw; however, 
this was not considered in our measurements. We then 
calculated a response ratio by dividing the spread 
distance by the at-rest distance, which characterized 
the added separation permitted by the reduced 
suturing between the fifth ceratobranchial bones. All 
references to body size are standard length, measured 
from the anterior tip of the upper jaw to the posterior 
edge of the hypural plate.

Following the same protocol, we also measured 
oral and pharyngeal gape across a wider spectrum of 
piscivorous species, including other pharyngognathous 
cichlids as well as non-pharyngognathous percomorph 
fishes. We focused on juvenile size classes (6–15 cm) for 
comparison because the species reach very different 

adult sizes and we were particularly interested in this 
body size range when many ontogenetic transitions to 
piscivory occur. We sampled six Cichla species (Cichla 
ocellaris (N = 3), Cichla monoculus (N = 3), Cichla 
temensis (N = 2), Cichla piquiti (N = 3), Cichla kelberi 
(N = 3) and Cichla melaniae (N = 2)). We also sampled 
other piscivorous cichlids that exhibit fully sutured 
lower pharyngeal jaws, including: five Neotropical 
species (Crenicichla lugubris (N = 3), Parachromis 
dovii (N = 3), Petenia splendida (N = 3), Caquetaia 
myersi (N = 3) and Nandopsis haitiensis (N = 3)); 
six species from Lake Malawi (Rhamphochromis 
esox (N = 2), Nimbochromis livingstonii (N = 3), 
Dimidiochromis compressiceps (N = 3), Aristochromis 
christyi (N = 3), Champsochromis spilorhynchus 
(N = 3) and Champsochromis caeruleus (N = 3)); three 
species from Lake Tanganyika (Boulengerochromis 
microlepis (N = 1), Lepidiolamprologus kendalli 
(N = 3) and Cyphotilapia frontosa (N = 3)), and one 
species from Madagascar (Paratilapia polleni (N = 3)). 
We also sampled non-pharyngognathous species that 
are distributed across the percomorph phylogeny 
(Alfaro et al., 2018), including the Centrarchidae 
(black basses and sunfishes: Micropterus salmoides 
(N = 6), Pomoxis nigromaculatus (N = 3), Lepomis 
gulosus (N = 1) and Lepomis cyanellus (N = 3)), 
Serranidae (groupers and sea basses; Serranus 
tigrinus (N = 3) and Serranus baldwini (N = 3)); the 
Sebastidae (rockfishes: Sebastes ruberrminus (N = 1)); 
the Scorpaenidae (scorpionfishes and lionfishes: 
Pterois volitans (N = 1)); the Antennariidae (frogfishes: 
Antennarius commerson (N = 3)); the Datnioididae 
(freshwater tripletails: Datnioides microlepis (N = 3)); 
the Anabantidae (African bush fish: Ctenopoma 
aqutirostre (N = 3)); the Nandidae (Asian leaffish: 
Nandus nandus(N = 3)); the Osphronemidae (Asian 
pikehead gourami: Luciocephalus aura (N = 3)), 
and the Polycentridae (South American leaffish: 
Monocirrhus polyacanthus (N = 3)). These species shift 
to varied degrees of piscivory as adults (Table 1). In 
order to correct for differences in body size, pharyngeal 
gape was expressed as a proportion of oral gape and 
SL, and oral gape as a proportion of SL. A key aspect 
of our measurements of pharyngeal gape is that we 
made measurements on anesthetized specimens, 
ensuring that soft tissues were supple and the degree 
of stretching could be realistically determined. The use 
of formalin fixed material, as in many previous studies, 
limits these inferences because fixation results in 
considerable stiffening of soft tissues. All of the data 
presented here are new and previously unpublished.

phyloGenetic comparative analyses

We compared pharyngeal and oral jaw gape among 
pharyngognathous species, non-pharyngognathous 
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species, and Cichla using phylogenetic ANOVA with a 
residual randomization permutation procedure (Collyer 
and Adams, 2018) implemented in the geomorph R 
package (Adams and Otárola‐Castillo, 2013). Statistical 
significance of the model was determined using 1000 
permutations. Statistical significance of pairwise 
comparisons was assessed using the pairwise function 
implemented in the RRPP package (Collyer and Adams, 
2018). For these analyses, we used an existing phylogeny 
of fishes (Rabosky et al., 2018), pruned to include only the 
species we sampled. In two cases, the species associated 
with the tip in the phylogenetic tree and morphological 
measurements were not exact matches. We associated 
morphological data for Luciocephalus aura with its 
congener Luciocephalus pulcher in the phylogenetic tree. 
We also associated morphological data from Datnioides 
microlepis with closely-related Lobotes pacificus in the 
phylogenetic tree (Near et al., 2013).

RESULTS

pharynGeal Gape throuGh ontoGeny

In Cichla, pharyngeal gape increased with body size; 
however, the degree of mobility between the left and 
right LPJs was significantly negatively correlated with 
body size (Fig. 2). Juvenile specimens (2–3 cm SL) could 
separate their lateral processes to 1.7-times their resting 
distance, whereas this fell to 1.05-times in subadults and 
adults (>14 cm SL; Fig. 1). The suture between left and 
right lower pharyngeal jaw bones in Cichla was limited 
to 15% of the length of the ceratobranchial in small 
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specimens (2–3 cm SL) but increased to 45% in 15 cm 
specimens. Except in the largest specimens, Cichla 
pharyngeal and oral gape were consistently higher than 
other cichlids, but less than Micropterus (Fig. 3A). In all 
four species, pharyngeal gape was smaller than oral gape 
throughout ontogeny (Fig. 3A); however, Crenicichla and 
Parachromis had shallower slopes indicating that they 
became more pharyngeal gape limited during ontogeny 
than Micropterus (Fig. 3A). In comparison, pharyngeal 
gape of juvenile Cichla was similar to Micropterus, 
but at larger body sizes was less than Micropterus and 
similar to other cichlids (Fig. 3A). This ontogenetic 
transition from a pharyngeal gape on par with a non-
pharyngognathous piscivore to one that is similar to 
pharyngognathous species coincides with the period in 
ontogeny when Cichla exhibit a loss of mobility between 
the left and right lower pharyngeal jaws (Figs 2 and 3A).

pharynGeal Gape amonG juvenile percomorphs

All 35 species of cichlids and non-pharyngognathous 
percomorphs had pharyngeal gapes that were smaller 
than their oral gape, indicating that they were 
pharyngeal gape limited (Fig. 3B). Cichlids, with the 
exception of Cichla, had smaller pharyngeal gapes 
than non-pharyngognathous species (Fig. 3B). After 
accounting for body size with a phylogenetic ANCOVA, 
pharyngeal gape differed between pharyngeal jaw 

states (f = 3.63; P = 0.032). Pharyngognathous cichlids 
had significantly smaller pharyngeal gapes relative 
to their standard length than non-pharyngognathous 
percomorphs (P = 0.0001; Fig. 4). The pharyngeal 
gapes of Cichla species were significantly larger than 
pharyngognathous cichlids (P = 0.003) but were similar 
to the non-pharyngognathous percomorph fishes 
(P = 0.799; Fig. 4). Similarly, size of the pharyngeal gape 
relative to oral gape differed among pharyngeal jaw 
states (f = 4.86; P = 0.012). Pharyngognathous cichlids 
had significantly smaller pharyngeal gapes relative to 
oral gape than non-pharyngognathous percomorphs 
(P = 0.0001; Fig. 4). Cichla had significantly larger 
pharyngeal gapes relative to their oral gape than other 
cichlids (P = 0.001) and similar pharyngeal gapes as 
non-pharyngognathous percomorph fishes (P = 0.784; 
Fig. 4). Pharyngeal jaw states did not differ in their 
oral gapes (f = 0.28; P = 0.744).

DISCUSSION

Pharyngognathy has evolved independently at least 
five times, including in cichlids (Cichlidae), wrasses and 
parrotfishes (Labridae), damselfishes (Pomacentridae), 
surfperches (Embiotocidae) , and within the 
Beloniformes—in halfbeaks (Hemiramphidae) and 
flying fishes (Exocoetidae) (Stiassny & Jensen, 1987; 
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Wainwright et al., 2012). Diets that require intense 
pharyngeal processing have evolved at an elevated 
rate in pharyngognathous lineages (McGee et al., 
2015). In particular, durophagy has evolved frequently 
in labrids (Wainwright, 1988; Bellwood et al., 2005) 
and cichlids (Hulsey, 2006; Burress, 2016). Conversely, 
piscivory is relatively uncommon in pharyngognathous 
groups. Labrids eat primarily shelled invertebrates, 
with only a handful of piscivorous species (Bellwood 
et al., 2005; Burress & Wainwright, 2019). Damselfish 
and surfperches feed on algae, crustaceans and other 
small invertebrates (Schmitt & Coyer, 1983; Holbrook 
& Schmitt, 1992; Letourneur et al., 1997; Frédérich 
et al., 2009). Halfbeaks are omnivorous, feeding upon 
drifting algae, seagrasses and plankton (Tibbets & 
Carseldine, 2005; Tibbets et al., 2008), whereas flying 
fishes feed principally upon plankton (Van Noord et al., 
2013). The only pharyngognathous group in which 
piscivory is widespread is the cichlids, where it has 
evolved independently at least a dozen times, including 

in Lakes Tanganyika, Malawi and Victoria, as well as 
the Americas (Muschick et al., 2012; Seehausen, 2015; 
Burress, 2016).

It is unclear how cichlids have frequently 
transitioned to piscivory despite pharyngognathy. 
These lineages are usually either single species (e.g. 
Boulengerochromis microlepis and Petenia splendida) 
or are relatively species-poor (e.g. Bathybates 
and Cichla), perhaps indicating that piscivory is 
functionally demanding or that piscivory represents 
a high adaptive peak that limits subsequent 
diversification (Collar et al., 2009). Piscivorous 
cichlids tend to have a dorsal-ventrally shallow lower 
pharyngeal jaw with long, slender lateral processes 
and, in some cases, numerous, simple, low-profile 
teeth (Burress et al., 2015; Burress, 2016). This gracile 
morphology may ease gape limitation by increasing 
pharyngeal gape; however, our results show that 
these species exhibit significantly smaller pharyngeal 
gapes than our sample of non-pharyngognathous 
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fishes (Fig. 4; see also McGee et al. (2015)). Large 
body size is associated with piscivory in some 
cichlids, such as Boulengerochromis, Parachromis 
and some Crenicichla, a pattern that at least in part 
reflects that gape scales with body size (Mittelbach 
& Persson, 1998). In combination with a transition 
to piscivory, large body size would ease the effect of 
gape limitation. Although fish are the dominant prey 
item in adult diets of most piscivorous cichlid species, 
there is a large amount of variation in how fully and 
quickly cichlids shift to piscivory during ontogeny 
(Burress et al., 2013a). Species often progress 
through a gradual transition in which they also eat 
crustaceans and insects rather than shift exclusively 
to fishes or only do so at a large body size (Winemiller, 
1989; Layman et al., 2005; Montaña & Winemiller, 
2009). Cichla appear to shift almost exclusively to 
piscivory at a relatively small body size. Juveniles (up 
to 5–7 cm) feed on zooplankton and midges and then 
shift towards piscivory, consuming principally fish by 
10–15 cm (Arcifa, 1993; Jepsen et al., 1997; Meschiatti 
& Arcifa, 2002; Novaes et al., 2004). In comparison, 
5–7 cm Crenicichla generally consume less than 25% 
fish prey, even species that go on to consume > 75% as 
adults (Burress et al., 2013a; Montaña & Winemiller, 
2009), 6–7 cm Parachromis consume about 34% fish 
prey (Figueiredo et al., 2015), and 5–7 cm Caquetaia 
consume about 10% fish prey, but shift to about 60% 
at around 8–10 cm (Winemiller, 1989).

The transition to piscivory that occurs during 
ontogeny is a crucial event for piscivorous fishes (Buijse 
& Houthuijzen, 1992; Olson et al., 1995; Mittelbach 
& Persson, 1998; Post, 2003). The switch is typically 
associated with an acceleration in growth rate fuelled 
by the higher quality diet and can translate into 
larger body size and higher long-term survival (Olson, 
1996; Post et al., 1998). We suggest the possibility 
that the small-bodied shift to piscivory in Cichla may 
be supported by their reduced pharyngeal suturing, 
which permits dynamic expansion of the pharyngeal 
gape of juveniles (Fig. 2). It is interesting that the shift 
to piscivory occurs at a similar body size in Cichla 
and the largemouth bass (Micropterus salmoides), a 
species that has been held up as an ecomorphological 
counterpart (Norton and Brainerd, 1993). Micropterus 
salmoides shift to piscivory between 5–10 cm and 
ultimately feed mostly upon fishes (up to 95% of diet; 
Mittelbach & Persson (1998)). The rapid ontogenetic 
shift to piscivory affects survival and growth rate 
in Micropterus (Post, 2003), and in Cichla the shift 
to piscivory has also been linked to growth rate and 
mortality rates (Winemiller et al., 1997).

A noteworthy strategy that may have allowed some 
cichlids to feed on fishes is specialization on small fishes. 
Diets in several highly piscivorous Neotropical cichlids 
are dominated by small-bodied characids (Winemiller, 

1989; Montaña & Winemiller, 2009; Burress et al., 
2013b) that are well below any limitations set by 
maximum gape. Small-bodied characids are often 
dominant components of fish assemblages throughout 
the Americas and Africa (Arrington & Winemiller, 
2006; Montaña et al., 2015), and their high availability 
may have been a factor in the widespread evolution of 
piscivory in cichlids. Cichla have been found to rely on 
small characids during the dry season, but otherwise 
are known to consume comparatively large prey 
(Winemiller et al., 1997), including anecdotal evidence 
that juveniles are capable of consuming prey one-third 
their body size (Stiassny, 1991).

CiChla pharynGeal jaw innovation

In all cichlids other than Cichla, the left and right 
lower pharyngeal jaw bones are sutured together 
along their entire medial border (Stiassny, 1981; 
Casciotta & Arratia, 1993). The suturing of these bones 
produces a single lower jaw structure, a robust jaw 
element that can resist occlusal forces (Hulsey, 2006). 
Further reinforcement of the lower pharyngeal jaw 
element, suture and musculature are associated with 
consumption of hard-shelled prey and the diversity 
of these features occurs largely along the soft-body 
to hard-shell prey axis (Hulsey, 2006; Burress, 2016). 
On one extreme of this axis, prey processing by the 
pharyngeal jaws does not require forceful biting or 
shearing of prey items. Piscivores use their pharyngeal 
jaws to grasp and transport prey to the oesophagus. 
Pharyngognathy makes this process less efficient due 
to reduced pharyngeal gape (McGee et al., 2015; Fig. 4).

In Cichla, the left and right lower pharyngeal jaw 
bones are united by a short, straight suture at their 
anterior tip (Stiassny, 1981; Casciotta & Arratia, 1993; 
Fig. 1). This configuration allows the lateral processes 
of the lower pharyngeal jaw bones to spread apart, 
producing an increased pharyngeal gape (Fig. 2). The 
capacity for spreading in the lower pharyngeal jaws 
declines sharply during ontogeny and is negligible 
by 14 cm. In juveniles, mobility in the midline joint 
is made possible by a relatively loose ligamentous 
connection between the bones. During ontogeny, the 
suture expands and becomes tighter, spanning about 
15% of the length of the lateral process in juveniles (~ 
1.5 cm SL) and up to about 45% in adults, reducing the 
capacity of the pharyngeal jaw bones to spread. The 
initial suturing of the lower pharyngeal jaw occurs 
sometime between 1 and 3 months of age in Nile 
tilapia, Oreochromis niloticus (Pabic et al., 2009). It 
is unknown if this process proceeds from the anterior 
end and expands posteriorly; however, a heterochronic 
mechanism through retardation of suture growth rate 
or delay in the onset of its development may be involved 
in the evolution of the reduced suturing found in Cichla.
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The potential for evolution to lead to a reduction of 
the connection between the pharyngeal jaw bones in 
Cichla may depend on an important feature of cichlid 
pharyngognathy. The left and right lower pharyngeal 
jaw bones are sutured together in cichlids (as they are 
in the false scorpion fish Centrogenys); however, they 
are fused together in the other pharyngognathous 
groups, including labrids, pomacentrids, embiotocids 
and beloniforms (Wainwright et al., 2012). This 
sutured condition may have presented less of a barrier 
to its reduction in Cichla, as there are no other known 
instances of such a feature in taxa with fused lower 
pharyngeal jaws.

The reduced connection between lower pharyngeal 
jaw bones in Cichla allows them to overcome one 
functional trade-off incurred with pharyngognathy 
when they are young. An expandable pharyngeal 
gape facilitates consumption of large prey and may 
be an important factor in permitting the switch to 
piscivory to occur at a small body size. A relatively 
early ontogenetic shift to piscivory may have positive 
consequences for growth, fitness, and survivorship 
in Cichla, as it does in some other piscivores (Post, 
2003). Therefore, gape limitation is especially 
influential for juveniles because gape scales strongly 
with body size (Mittelbach & Persson, 1998). The 
Cichla pharyngeal jaw novelty permits juveniles to 
have a pharyngeal gape size that is similar to non-
pharyngognathous percomorphs (Figs 3 and 4). As 
adults, Cichla pharyngeal jaw mobility wanes and 
their pharyngeal gape becomes similar to other 
pharyngognathous cichlids; however, at this point in 
ontogeny, large body size may ease gape limitation 
(Mittelbach & Persson, 1998).

The reduced suturing in the lower pharyngeal jaw 
of Cichla is one of several anatomical features that 
have previously been proposed to relate to piscivory 
(Stiassny, 1982, 1991; Norton and Brainerd, 1993). 
Other noteworthy pharyngeal features include 
an extreme lower pharyngeal jaw shape (Burress, 
2016), simplified dentition of the lower jaw and 
enlarged third pharyngobranchial bones of the 
upper jaw (Casciotta & Arratia, 1993), several 
specific positional and shape changes in bones of the 
upper pharyngeal jaws and the presence of a dorsal 
articulating facet on pharyngobranchial 3 (Stiassny, 
1982), reduced cross sectional diameter of the 
muscular sling (Burress et al., 2020), and the loss of 
the semi-circular ligament system (Stiassny, 1991). 
This latter trait is plesiomorphic or widespread 
among percomorphs, was lost in other cichlids, and 
appears again in Cichla (Stiassny, 1982, 1991). 
Reduction of pharyngeal suturing could also be 
thought of as a return to a more ancestral condition, 
although reduced suturing is not known in outgroup 

taxa. Other traits, such as the dorsal articulating 
facet on pharyngobranchial 3, show no parallel in 
outgroup taxa. Reappearance of the semi-circular 
ligaments in Cichla has been termed atavistic 
(Stiassny, 1991) and the appearance of a more 
ancestral condition in this trait and the suturing 
of the lower pharyngeal jaws of Cichla raises the 
possibility that they may be united by a common 
developmental genetic process that has been slowed 
or started later in development in Cichla, resulting 
in derived traits that represent more plesiomorphic 
conditions found outside cichlids (Stiassny, 1991). 
Although we have identified important functional 
consequences of one of these novelties, the reduced 
suturing of the lower pharyngeal jaw bones, we 
consider it likely that some of the other derived 
traits contribute to functional aspects of piscivory in 
Cichla and we look forward to future research that 
explores the functional morphology of this taxon 
more fully.

Our observations on the functional consequences 
of reduced pharyngeal suturing in Cichla highlight 
the importance of trade-offs that often accompany 
functional innovations. Trade-offs may be expected to 
affect the evolutionary consequences of innovations 
by biasing subsequent diversification away from 
niches that are blocked by the trade-off (McGee 
et al., 2015). We suggest that significant trade-offs 
are a general feature of functional innovations and 
should be considered when exploring their impacts on 
ecological diversification. Indeed, it may be that the 
more substantial the innovation, the more substantial 
the trade-off. As an example, the evolution of powered 
flight clearly affected bird diversification in positive 
ways (Padian & Chiappe, 1998), but it also introduced 
a constraint on body mass due to metabolic and 
performance demands (McNab, 1994; Tobalske & Dial, 
2000; Elliot et al., 2013). There is a tendency to focus on 
the enabling consequences of functional innovations; 
however, the potency of trade-offs may be a major 
factor in shaping the diversity of macroevolutionary 
outcomes from life’s innovations.
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