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abstract: In accordance with predictions of the size-advantage
model, comparative evidence confirms that protogynous sex change
is lost when mating behavior is characterized by weak size advan-
tage. However, we lack comparative evidence supporting the adap-
tive significance of sex change. Specifically, it remains unclear whether
increasing male size advantage induces transitions to protogynous sex
change across species, as it canwithin species.We show that inwrasses
and parrotfishes (Labridae) the evolution of protogynous sex change
is correlated with polygynous mating, and that the degree of male
size advantage expressed by polygynous species influences transitions
between different types of protogynous sex change. Phylogenetic re-
constructions reveal strikingly similar patterns of sex allocation and
mating system evolution with comparable lability. Despite the plastic-
ity of sex-determination mechanisms in labrids, transitions trend to-
ward monandry (all males derived from sex-changed females), with
all observed losses of protogyny accounted for by shifts in the timing
of sex change to prematuration. Likewise, transitions inmating system
trend from the ancestral condition of lek-like polygyny toward greater
male size advantage, characteristic of haremic polygyny. The results of
our comparative analyses are among the first to confirm the adaptive
significance of sex change as described by the size-advantage model.

Keywords: Labridae, polygynous mating, phylogenetic comparative
method, protogynous hermaphroditism, size-advantage model,
Teleostei.

Introduction

Sequential hermaphroditism is a reproductive strategy with
multiple evolutionary origins distributed sporadically across
the tree of life (Policansky 1982; Sadovy de Mitcheson and
Liu 2008). It is characterized by a change in the functional
expression of sex, from one to the other. Among vertebrates,
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sequential hermaphroditism is known only in teleosts (Todd
et al. 2016), where sex change can be male to female (pro-
tandry), female to male (protogyny), or serial bidirectional.
Each form of sequential hermaphroditism has evolved mul-
tiple times within teleosts, demonstrating the lability of fish
sex-determinationmechanisms (Smith 1975; Charnov 1982;
Policansky 1982; Mank et al. 2006).
The dominant theory describing the adaptive signifi-

cance of sequential hermaphroditism is the size-advantage
model (SAM; Ghiselin 1969; Warner 1975; Leigh et al.
1976; Charnov 1982). The model contends that sex change
is favored when the rate of increase in reproductive value
with size and age differs between the sexes. Correspondingly,
gonochorism (the existence of separate, fixed sexes) is pre-
dicted when size-specific male and female reproductive out-
comes do not differ (Warner 1975; Muñoz and Warner
2003, 2004). A range of complex, interacting factors ca-
pable of contributing to differences in reproductive value
between the sexes, including aspects of population demog-
raphy, life history, social system, and the local environ-
ment, have been integrated into the SAM (Charnov 1982;
Warner 1988; reviewed in Avise and Mank 2009). Of these,
mating behavior has emerged as an important determinant
of size-related differential reproductive outcomes (Shapiro
1987; Ross 1990; Munday et al. 2006a). This is because
certain mating systems are also contingent on male size
advantage.
For example, protogyny, the most prevalent form of se-

quential hermaphroditism in fishes (Sadovy de Mitcheson
and Liu 2008; Todd et al. 2016), is predicted to be adap-
tive when reproductive value increases with size faster
in males than in females (Warner 1975; Leigh et al. 1976).
Protogynous species can be either monandric, in which case
all males are derived from sex-changed females, or diandric,
in which case males are either born into the population or
derived from sex-changed females (see fig. 1 for definitions).
Sex-based size asymmetry is also characteristic of polygy-
nousmating,wheremalesuse their size advantage tomonop-
olize access to females by guarding them or the resources
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on which they depend (Ghiselin 1969; Taborsky 1998). This
behavior results in large males having a reproductive advan-
tage over females and small males, thereby enabling selec-
tion for protogynous sex change (Warner 1975, 1984, 1988).
Polygynous mating can include haremic systems, where a
single male monopolizes and mates with one (Pitcher 1993)
or more females within a defined permanent territory, and
lek-like systems, where males establish temporary territories
that are visited by females for the purpose of reproduction.
As mating becomes more promiscuous, sperm competition
increases, and the reproductive advantage of large males de-
creases because of the dilution of gametes by othermales, con-
sequently reducing selection for protogyny (Warner 1975).
When large males have strong social control over fe-

males (i.e., male size reflects dominance or social status),
as in haremic systems, monandric protogyny is predicted
(Robertson and Choat 1974; Robertson and Warner 1978;
Warner and Robertson 1978; Warner 1984; Nemtzov 1985).
In lek-like systems where the social control of large males
is reduced, primary males are able to realize reproductive
success, and selection should favor diandric protogyny (Rob-
ertson and Choat 1974; Emlen and Oring 1977; Robertson
and Warner 1978; Warner and Robertson 1978). Corre-
spondingly, gonochorism is predicted when males lose so-
cial control, as in promiscuous mating behaviors such as
group spawning (Robertson and Warner 1978; Warner
1984; Hoffman 1985). Qualitative assessments of mating
behavior support its role as a primary determinant of the
degree of size advantage and, consequently, of the inci-
dence and direction of sequential hermaphroditism in fishes
(Warner 1984; Ross 1990; Munday et al. 2006a; Erisman
et al. 2013).
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Population demographic studies and observations of
mating dynamics within species provide empirical support
for the influence of mating behavior on sex allocation as
predicted by the SAM (Robertson 1972; Warner and Rob-
ertson 1978; Warner and Hoffman 1980a; Fukuda et al.
2017). Phylogenetic comparative studies have shown that
the loss of protogyny is contingent on weak size advan-
tage (Kazancıoğlu and Alonzo 2010) and group spawning
(Erisman et al. 2009). However, no comparative studies
have supported predictions about the adaptive significance
of protogynous sex change. Specifically, we lack compara-
tive evidence showing that as size advantage increases, and
large males have greater opportunity to monopolize mating,
protogynous sex change evolves. Many aspects of an organ-
ism’s biology, demography, and ecology have the potential
to affect the expression of complex traits such as mating
system and sex allocation. Moreover, behavioral traits tend
to be more evolutionarily labile than life-history traits
(Blomberg et al. 2003). It remains unknown whether vari-
ation in the degree of male size-advantage characteristic of
specific types of polygynous mating induces evolutionary
transitions to and within types of protogynous sex change
in the context of other influential factors. Do the effects of
mating behavior on sex allocation observed within species
scale up to macroevolutionary patterns?
The wrasses and parrotfishes, along with cales and weed-

whitings (Labridae) provide an ideal opportunity to evalu-
ate the evolutionary synergy between sex allocation and
mating behavior along a spectrum of male size advantage
(fig. 1). The Labridae form a monophyletic assemblage
(Westneat and Alfaro 2005) comprising one of the largest
families of marine fishes, with a global distribution spanning
Sex allocation

Monandric protogyny
All males are derived via sex change from

functional females (secondary males).

Diandric protogyny
Males are either born into the population

(primary males) or derived from sex-changed
females (secondary males).

Gonochorism
Individuals reproduce exclusively as either

male or female throughout their lives.

Mating system

Haremic polygyny
Terminal phase males monopolize one or more

females within a permanent territory.

Lek-like polygyny
Terminal phase males establish temporary

territories visited by females for the purposes
of reproduction.

Promiscuity
Terminal phase males do not defend territories

with the purpose of attracting mates.

Male size
advantage

Figure 1: Types of mating and sex allocation systems expressed by labrid fishes, their definitions, and predicted associations with the degree
of male size advantage. As male size advantage increases from promiscuous mating to lek-like polygyny, selection is predicted to favor tran-
sition from gonochorism to diandric protogyny. Likewise, as male size advantage increases from lek-like to haremic polygyny, selection
should favor transitions from diandric to monandric protogyny. Definitions are from Warner and Robertson (1978), Colin and Bell (1991),
and Sadovy de Mitcheson and Liu (2008).
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tropical and temperate waters. Extensive scientific interest
in labrid mating and sex systems has produced some of
the most influential insights into the adaptive significance
of sequential hermaphroditism (Darwin 1871; Ghiselin
1969; Robertson 1972; Robertson and Choat 1974; Warner
1975; Warner et al. 1975; Leigh et al. 1976; Muñoz and
Warner 2004), as well as many observations that both sup-
port and contradict predictions of the SAM (Robertson
and Warner 1978; Warner 1984; Nemtzov 1985; Warner
and Lejeune 1985; Cowen 1990;Morrey et al. 2002; Adreani
et al. 2004; McBride and Johnson 2007). The most com-
prehensive comparative analysis to date of the SAM fo-
cused on labrids, whereby the authors combined mating
behavior with other phenotypic traits, including color, to
quantify male size advantage as either strong or weak
(Kazancıoğlu and Alonzo 2010). They found that proto-
gyny is less likely to be lost under strong size advantage
but did not find evidence that strong size advantage in-
duces transitions from gonochorism to protogyny. Incor-
porating variation within polygyny and protogyny will
provide more detail about the evolutionary dynamics be-
tween mating behavior and sex allocation and allow us
to assess the effects of each trait regime on the adaptive
evolution of the other.
As a result of considerable past research efforts, labrid

mating and sex systems are comparatively well quantified.
Protogynous sex change is pervasive among labrids and
has been reconstructed as the ancestral condition (Sadovy
deMitcheson and Liu 2008; Kazancıoğlu andAlonzo 2010;
Erisman et al. 2013). Labrid species express both types of
protogyny—monandry and diandry—the origins of which
have yet to be inferred in the context of a time-calibrated
phylogeny. The family also includes some gonochoristic
species.Mating systems are equally as diverse; some species
maintain harems, other species exhibit lek-like polygyny,
and other speciesmate promiscuously with no territory de-
fense by males for the purpose of attracting mates. Finally,
robust phylogenetic hypotheses exist that include more
than half of the nominal labrid species, with opportunities
to expand the taxonomic representation of species arising
frequently.
We are now in a position to explore the evolutionary

history of and synergy between mating behavior and sex
allocation in wrasses and parrotfishes along a continuum
of male size advantage. We use Bayesian methods to re-
construct the evolutionary history of each trait in the con-
text of a new, taxonomically expanded phylogeny, and
apply discrete trait comparative methods to test predicted
associations between specific types of protogynous sex
change and polygynous mating with distinct degrees of
male size advantage. In doing so, this work broadens our
understanding of the interplay between reproductive and
social systems on a macroevolutionary scale.
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Material and Methods

Phylogenetic Inference and Divergence Time Estimation

To account for evolutionary relatedness among labrid spe-
cies, we reconstructed their phylogenetic relationships us-
ing a molecular data set consisting of four mitochondrial
(12S, 16S, COI, and CytB) and three nuclear loci (RAG2,
TMO4c4, and S7), with a total of 4,578 base pairs. Se-
quence data were compiled from GenBank for all avail-
able nominal species—at the time of sampling this in-
cluded 403 species from 74 genera, and two outgroup taxa
(see table S1 for accession numbers and table S2 for infor-
mation on molecular sampling; tables S1–S7 are available
online). Methods used in tree construction and divergence
time estimation are presented in section 1 of the supple-
mental PDF, along with the results and discussion.
Trait Data Compilation

We compiled data on species-specific mating systems and
sex allocation pathways from the primary literature (fig. 1;
table S5; deposited in the Dryad Digital Repository: https://
doi.org/10.25338/B8GC91; Hodge et al. 2020). Mating sys-
tem classifications focused only on terminal-phase males
and did not consider the mating strategies of initial-phase
males—although it is known that the reproductive output
of initial-phase males can outweigh that of terminal-phase
males for some species dependent on location-specific
population dynamics (Warner and Hoffman 1980a, 1980b;
Warner 1982). We applied the consensus classification of
the predominant mating system (i.e., supported by multiple
authors) whenever possible and otherwise relied on themost
recent observations. We restricted sexual ontogeny data to
accounts of protogyny that were distinguishable as either
monandric or diandric based on gonad histology or pop-
ulation demographics, or both. Cases where males are de-
rived from females that have not passed through a func-
tional stage were categorized as functionally gonochoristic
following previous work (Sadovy and Shapiro 1987; Sadovy
de Mitcheson and Liu 2008; Kazancıoğlu and Alonzo 2010;
Erisman et al. 2013). Mating system and sex-change data
were available for 89 labrid species (table S5).
Ancestral State Reconstruction

We reconstructed the evolutionary history of sex allo-
cation and mating system using the MultiState package
implemented in BayesTraits version 3.0.1 (Pagel et al. 2004;
Pagel and Meade 2006). We fit continuous-time Markov
models to each set of discrete character data using a
reversible-jump Markov chain Monte Carlo (rjMCMC)
analysis to derive posterior distributions of the ancestral
state and transition rates. An exponential reversible jump
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hyperprior (0 10) was specified for the rate parameter dis-
tributions, and the trees were scaled to have a mean branch
length of 0.1. Markov chains were run three times across
a random sample of 1,000 time-calibrated phylogenies
(deposited in the Dryad Digital Repository: https://doi.org
/10.25338/B8GC91; Hodge et al. 2020) for 4 million itera-
tions, sampling every 4,000 steps, following a burn-in of
1 million iterations. We monitored the average accep-
tance rates to ensure that the values were between 20%
and 40%, indicating that the rjMCMC was mixing well.
We examined traces of the likelihood and parameters in
Tracer version 1.5 (Rambaut et al. 2009) to ensure con-
vergence and effective sample sizes (ESS 1 200) across the
three independent runs. Parameter summary statistics were
calculated from the concatenated estimates of three con-
verged runs.
To visualize the evolutionary history of each trait, we

also performed ancestral state reconstructions as described
above on the maximum clade credibility (MCC) tree and
calculated the average posterior probabilities of each char-
acter state at each node in the phylogeny (fig. 2). Transi-
tions in character states were defined as nodes with pos-
terior probability values ≥ 0.50 in support of a transition
relative to a preceding node (i.e., a direct ancestor) with
posterior probability ≥ 0.50 for a different state and in-
cluded changes along terminal branches. We summarized
the number, location, and nature of these transitions.
Trait Correlations

To test whether increasing male size advantage results in
transitions to protogynous sex change, we compared the
fit of independent and dependent models of trait evolution
using the Discrete package implemented in BayesTraits
version 3.0.1 (Pagel et al. 2004; Pagel and Meade 2006).
The independent, or null, model of evolution assumes that
there is no correlation between two traits and that they
evolved independently. The dependent model describes
the correlated evolution of two traits such that the rate
of change in one trait depends on the state of the other
trait. As Discrete accepts only binary trait data, we per-
formed two tests: the first test used the full data set
(n p 89 species) to assess the correlation between polyg-
yny and protogyny (species coded as either promiscuous
or polygynous and gonochorous or protogynous); the
second test used a reduced data set that included only
species that are both polygynous and protogynous (n p
70 species) to assess predicted correlations between the
two traits based on different degrees of male size advan-
tage (species coded as either lek-like or haremic and
diandric or monandric).
Models were fit using the same set of 1,000 trees, num-

ber of generations, sampling frequency, burn-in, and hyper-
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prior specifications as the MultiState analysis described
above. Run diagnostics of the acceptance rates, likelihood,
and parameter traces were also performed as above. We
determined the most probable evolutionary model by cal-
culating log Bayes factors (BFs) for each pair of models as
twice the difference in the log marginal likelihood of the
dependent model minus the independent model (Kass and
Raftery 1995). Marginal likelihoods were estimated using
the stepping-stone sampler (Xie et al. 2011) implemented
in BayesTraits version 3.0.1 (Pagel et al. 2004; Pagel and
Meade 2006), where each independent run sampled
100 stones, each with 10,000 iterations. Log BFs were aver-
aged across independent runs. The log BF quantifies the
weight of evidence against the null hypothesis (the indepen-
dentmodel)whereby values12 indicate little evidence, values
from 2 to 5 indicate positive evidence, and values 1 5 indi-
cate strong evidence for the dependent model over the in-
dependent model (Raftery 1996). We calculated z-scores
for each transition parameter as the proportion of tran-
sitions assigned to 0 across the three independent, concat-
enated runs. The z-score provides an additional descriptor
of the likelihood distribution of the transition rate. Low
z-scores indicate that transitions were rarely assigned to 0
and are likely to occur, whereas z-scores close to 1 describe
transitions that were frequently assigned to 0, indicating
that they are unlikely to occur.
Results

Evolutionary History of Sex Change and Mating System

Bayesian analyses indicated that the ancestral labrid mat-
ing system was most likely lek-like polygyny (average pos-
terior probability p 0:57, 95% highest posterior density
[HPD] interval: 0.3–1) but did not resolve the ancestral
sex allocation pathway, as all three possible states had
comparable posterior probabilities of ~0.33 (fig. 2). Twenty-
six transitions were recovered from Bayesian analyses of
the MCC tree for both mating system and sex allocation.
Nine of the 26 transitions in mating system occurred at
the nodes and 17 occurred along terminal branches. Tran-
sitions out of lek-like polygyny (61.5%) and to haremic
polygyny (42.3%) were the most frequent. Ten of the
26 transitions in sex allocation occurred at the nodes
and 16 occurred along terminal branches. Transitions out
of diandric protogyny (61.5%) and to monandric proto-
gyny (65.4%) were the most frequent.
Transitions in mating system and sex allocation are

tightly coupled. The effectively equal number of state-
dependent transitions summarized on the MCC tree pro-
vide little resolution regarding the predominant effects of
one trait regime over the other. Focusing on predicted
05/11/20 21:15ational
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character-state associations, we recovered seven state-
dependent transitions inmating system (i.e., wheremating
system transitions to the predicted state given the state of
sex allocation; nodes 1, 2, and 5; tip transitions 6, 10, 11,
and 15) and eight in sex allocation (i.e., where sex alloca-
tion transitions to the predicted state given themating sys-
tem state; nodes 1, 4, 6, and 10; tip transitions 2, 8, 9, and
14), with another seven simultaneous transitions where
mating system and sex allocation transition at the same
node or along the same terminal branch (indicated by dots
next to numbers and dashes in fig. 2).
From the Bayesian analyses of 1,000 tree topologies,

transitions between lek-like and haremic polygyny had the
highest rates and likelihoods (fig. 3). Promiscuity evolved
with a higher rate and likelihood among lineages with
haremic polygyny, but for haremic lineages, transitions to
promiscuity were less likely than reversals to lek-like polyg-
yny. For sex allocation, transitions tomonandric protogyny
had the highest rates and likelihoods (fig. 4). Transition
rates between gonochorism and monandric protogyny are
high in both directions, while transitions to and from di-
andric protogyny are unidirectional. Specifically, transitions
to diandric protogyny rarely occur among monandric
lineages and diandric lineages rarely transition to gono-
chorism. Transition rates and likelihoods are summarized
in figure 5 for both mating system (fig. 5A) and sex alloca-
tion (fig. 5B).
Evolutionary Correlations

Bayesian analyses show strong support for the correlated
evolution of polygynous mating and protogynous sex
change (average log BF p 5:83; fig. 6A; table S7). Proto-
gynous sex change is lost at a lower rate and with lower
probability among polygynous lineages than those that
are promiscuous (91.6% of posterior samples had lower
transition rates under polygynous mating). Polygynous
lineages transition to protogynous sex change at a higher
rate and with greater probability than those that are pro-
miscuous (51.0% of posterior samples had higher transi-
tion rates under polygynous mating). Transitions between
promiscuous and polygynous mating showed some de-
pendence on the state of sex allocation—specifically, proto-
gynous lineages transitioned to polygyny at a higher rate
than gonochorous lineages, but only 41.2% of posterior
samples reflected this state-dependent rate difference.
Specific types of polygynous mating and protogynous

sex change are also evolutionarily correlated as predicted
by the SAM (average log BF p 3:52; fig. 6B and table S7).
Haremic lineages transition from monandric to diandric
protogyny at a lower rate and with lower probability than
those with lek-like polygyny (80.9% of posterior samples
had lower transition rates under haremic mating). How-
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ever, transitions to monandry occurred at similar rates and
with similar probability among lineages with either type of
polygynous mating (94.8% of posterior samples had similar
probabilities under each type of polygynousmating). Finally,
the state of sex allocation does have some effect on the rate of
transition between different types of polygynous mating,
whereby diandric lineages revert to lek-like mating at a
higher rate than monandric lineages, but only 42.8% of pos-
terior samples reflect this state-dependent rate difference.
Discussion

Evolutionary patterns of mating behavior and sex alloca-
tion across species of wrasses and parrotfishes are consis-
tent with intraspecific patterns (Robertson 1972; Warner
and Robertson 1978;Warner andHoffman 1980a; Fukuda
et al. 2017) and predictions of the SAM (Robertson and
Choat 1974; Robertson and Warner 1978; Warner and
Robertson 1978; Warner 1984). Our results confirm that
protogynous sex change is less likely to be lost under po-
lygynous mating where male size advantage is stronger
(Erisman et al. 2009, 2013; Kazancıoğlu and Alonzo 2010)
and provide some of the first comparative evidence to sup-
port the adaptive evolution of protogynous sex change
with increasing male size advantage. As male control over
reproductive access to females increases from promiscu-
ous to polygynous mating, so too does the size-dependent
reproductive output of males relative to females, resulting
in transitions from gonochorism to protogyny (fig. 6A).
We also find that specific types of polygynous mating
and protogynous sex change have coevolved (fig. 6B), fol-
lowing predictions of the SAM (Robertson and Choat
1974; Robertson andWarner 1978; Warner and Robertson
1978; Warner 1984). Our results support mating behavior
as an important driver of transitions in sex allocation,
with limited support for effects of sex allocation on mat-
ing behavior. The tight evolutionary coupling of the two
trait regimes is likely facilitated by the labile nature of
sex determination in fishes, allowing it to be less phyloge-
netically patterned than other life-history or physiological
traits (Blomberg et al. 2003). Despite the lability of sex al-
location, we found that monandric lineages rarely transi-
tion directly to diandric protogyny, instead transitioning
through functional gonochorism on the pathway from
monandry to diandry. The overarching evolutionary trend
in labrid fishes is toward monandric protogyny and har-
emic polygyny.
Lek-like polygyny can be traced back to the origin of

the Labridae—as the estimated ancestral state with a high
rate of reversal (figs. 2, 3, 5), it appears to be evolutiona-
rily stable with the potential to affect detectable change in re-
lated traits. Early labrid lineages transitioned predominantly
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to haremic polygyny, which is estimated to have arisen as
early as 45.7 Ma (95% HPD: 55.5–38.6) along the lineage
leading to the most recent common ancestor of the Nova-
culini (earlier transitions are also possible, specifically after
the initial split of the Hypsigenyini [56.3 Ma; 95% HPD:
55.5–38.6] along the branch leading to Lachnolaimus maxi-
mus). In contrast, most transitions to promiscuous mating
occur along much shallower, terminal branches, suggesting
that for labrids this type of mating system may be less evo-
lutionarily stable. Furthermore, Bayesian analyses show that
promiscuousmating ismore likely to arise fromharemic po-
lygyny than from lek-like polygyny (figs. 3, 5A), suggesting
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that promiscuity is a secondarily derived state. However,
lineages that exhibit haremic polygyny are more likely to re-
vert back to lek-like polygyny than they are to transition to
promiscuity. This is concurrent with the expectation that
differential dominance relationships between males will form
when access to females cannot be controlled (Emlen and
Oring 1977).
Protogyny was previously reported as ancestral among

labrids (Sadovy de Mitcheson and Liu 2008; Kazancıoğlu
and Alonzo 2010; Erisman et al. 2013). Here we distin-
guished between the different types of protogyny (monan-
dric and diandric) but were not able to resolve the ancestral
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condition. Our result is based on the limited number of
species for which sex allocation pathways are known; as
this number increases, so too may our ability to resolve the
ancestral condition. The Novaculini and Julidini shared a
diandric common ancestor ∼45.7 Ma (95% HPD: 55.5–
38.6)— the earliest sex-allocation pathway reconstructed
with confidence (fig. 2). Gonochoristic ancestors were recon-
structed for other major clades including the Scarini and the
Labrini (respective divergence time estimates: 28.3 Ma;
95% HPD: 35.0–23.2 and 23.5 Ma; 95% HPD: 30.0–18.8),
while monandric protogyny emerged later in the evolution-
ary history of labrids, constituting the earliest reconstructed
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transitions (fig. 2). More broadly, transitions to monandric
protogyny occurred with the highest overall rates (fig. 4).
High transition rates between gonochorism and mon-

andry (figs. 4, 5B) lend more support to the ephemeral
or nonexistent nature of intermediate states in such
transitions (Erisman et al. 2013) and show that diandry
is not a necessary intermediate. Interestingly, transitions
between gonochorism andmonandry were largely restricted
to one clade, the Sparisomatinae (fig. 2). All of the line-
ages that experienced such transitions (with the excep-
tion of the lineage preceding Leptoscarus vaigiensis) gave
rise to extant species that are purportedly functionally
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gonochoristic, whereby males are derived from females
that have not passed through a functional stage (Sadovy
and Shapiro 1987; Sadovy de Mitcheson and Liu 2008).
We note that simply because individuals are capable of
prematurational sex change does not necessitate that all
males be derived in this way. Some individuals could un-
dergo postmaturational sex change, and the overall in-
terval for sexual differentiation may span pre- and post-
maturation (Kazancıoğlu and Alonzo 2010). In this case,
sex allocation would be more akin to diandric protogyny
(Robertson et al. 1982; Munday et al. 2006b). Two obser-
vations support the existence of diandry in several of these
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species: smaller testes size of terminal-phase males relative
to initial-phase males (Robertson and Warner 1978)—a
common characteristic of other diandric species (Molloy
et al. 2007)—and polygynous lek-like mating.
Regardless of the nature of these transitions, our results

show that once lineages evolve the ability of some or all
individuals to function first as females and later as males,
they rarely lose it. Transitions trend away from diandry
toward monandric protogyny (fig. 5B), suggesting that
when sustainable, labrids likely incur considerable fitness
benefits by functioning first as females (or considerable fit-
ness costs by not doing so). Labrids, like most other teleost
fishes exhibit remarkably labile sex-determination mecha-
nisms (Munday et al. 2006a; Kuwamura et al. 2007; Kiewek-
Martínez et al. 2010; Avise 2011), where the timing of
sexual differentiation is an important driver of variation
(Warner 1984; Kazancıoğlu and Alonzo 2010). Despite
this flexibility in sex determination and the existence of
opportunities throughout their evolutionary history to
exercise it, labrids hardly do so in favor of pathways alter-
native to sex-changed males.
Results of the evolutionary correlation analyses show a

greater effect of mating system on sex allocation than the
reverse (i.e., 3/4 transition rates and/or probabilities are
dependent on mating system, and 2/4 are dependent on
sex allocation; fig. 6). The SAM predicts that strong social
control over females will provide males with the greatest
size advantage, thus enabling the strongest selection for
protogyny (Robertson and Choat 1974; Warner 1975, 1984;
Emlen and Oring 1977; Robertson and Warner 1978;
Warner and Robertson 1978). In haremic polygyny, dom-
inant males are able to control the mating and sex change
of subordinate females (Robertson and Choat 1974; Nemtzov
1985; Lutnesky 1994; Morrey et al. 2002). Because of this
strict social control, nondominant primarymales are evolu-
tionarily unfit—they are unable to gain access to females for
reproduction—and haremic species are predicted to exhibit
monandric protogyny (Robertson and Choat 1974). This
line of reasoning explains how the expression of haremic
polygyny can induce change in sex allocation to monandric
protogyny.
Indeed, we recovered this pattern of character change

for the clade containing Coris julis and its close congeneric
relatives (fig. 2; see node 2 on the mating system character
map and node 4 on the sex-allocation character map). In
contrast, at the base of the Sparisoma clade it appears that
monandry was in place prior to transitions to haremic po-
lygyny (fig. 2; see node 2 on the sex allocation character
map and node 5 on the mating system character map).
Furthermore, Bayesian analyses show that the rate and
probability of transitions to monandry are not dependent
on the type of polygynous mating (fig. 6B). This suggests
that monandric protogyny may also be a sustainable
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Figure 5: The likelihood of transitions between mating system
(A) and sex allocation (B) character states, summarizing the data
presented in figures 3 and 4. Relative transition probabilities, cal-
culated as the proportion of iterations with a transition rate of 0
(z-score), are indicated by line weight, where thick solid lines rep-
resent z-scores ≤ 0.05, thin solid lines represent 0.49 1 z 1 0.06,
and dashed lines represent z-scores ≥ 0.5. Line color indicates
the rate class to which rate coefficients were assigned most fre-
quently. Similar rate coefficients are assigned to the same rate class
(integers beginning with 0), where z indicates a rate coefficient
assigned to 0. Rates assigned to z are shown in gray, and rates
assigned to 0 are shown in black. Below each character state, the
posterior probability of reconstructing that state as ancestral is
shown (average and 95% highest posterior density interval).
05/11/20 21:15ational



000 The American Naturalist
sex-allocation strategy under lower male size advantage
characteristic of lek-like mating. Such a character combi-
nation may arise if sex-changed males are able to limit
the reproductive success of other males without restricting
female movement to the same degree as in haremic sys-
tems. For example, pronounced visual traits like color pat-
tern or display behavior combined with unyielding female
mate choice may reduce to near zero the chances of pri-
mary males gaining access to mates.
Changes in the distribution of resources or other envi-

ronmental factors can limit the ability of males to monop-
olize females, resulting in the breakdown of haremic po-
lygyny and the formation of differential male dominance
characteristic of lek-like polygyny (Emlen and Oring 1977).
Transitions of this nature should create the potential for
primary males to gain reproductive access to mates and es-
tablish evolutionary fitness, thereby facilitating transitions
to diandric protogyny (Robertson and Choat 1974; Emlen
and Oring 1977; Robertson and Warner 1978; Warner and
Robertson 1978). Several clades show this pattern where
lineages that first expressed lek-like polygyny transition to
diandric protogyny (fig. 2; see nodes 5, 7, and 9 of the sex-
allocation character map). However, other species exhibit
the opposite order of character change, namely, Scarus ri-
vulatus, S. globiceps, S. ferrugineus, and S. forsteni (fig. 2).
Bayesian analyses show that transitions to diandry are highly
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dependent on whether lineages express lek-like or haremic
mating, such that they rarely occur if mating is haremic
(low rate coefficient and high z-score; fig. 6B). Taken to-
gether, our results suggest that once evolved, the extent
to which protogynous sex change is expressed is highly
adaptable, exceptwhenmating behavior permits strongmale
size advantage, inwhich case labrids rarely decrease their ex-
pression of protogyny.
Gonochorism is predicted to evolve when males and

females have similar size-specific reproductive expecta-
tions (Warner 1975). This can occur if local population
growth increases the density of males, thereby increasing
the ability of small males to gain reproductive access to
females and reducing the reproductive advantage of large
males through the dilution of gametes (Warner 1984;Muñoz
andWarner 2003, 2004). Asmating becomesmore promis-
cuous, selection for protogyny should decrease (Robertson
and Warner 1978; Warner 1984; Hoffman 1985). Loss of
protogyny has been associated with transitions to promis-
cuous mating in several groups of teleost fishes, including
labrids (Erisman et al. 2009, 2013). Our results also sup-
port this pattern of character change and show that for
this combination of traits, transitions to gonochorism have
the highest dependence on whether lineages express pro-
miscuity (fig. 6A). More notably, we show that transitions
to protogynous sex change are also dependent on whether
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mating is promiscuous or polygynous, with higher rates
and likelihood of transitions to protogyny for lineages with
polygynous mating.
Collectively, our results demonstrate that mating behav-

ior with varying degrees of male size advantage can induce
evolutionary change in a complex life-history trait. Labrids
have long been a model system for studying the adaptive
significance of sequential hermaphroditism (Darwin 1871;
Ghiselin 1969; Robertson 1972; Robertson and Choat
1974; Warner 1975, 1984; Warner et al. 1975; Leigh et al.
1976; Warner and Robertson 1978; Muñoz and Warner
2004). Our description of the nature and timing of tran-
sitions inmating system and sex allocation builds upon con-
siderable past research efforts but remains dependent on
the taxa included. Some of the patterns we recovered are
consistent with previous ideas about the drivers of change
in these complex traits, and our results provide some of
the first quantitative evidence showing that specific types
of polygynous mating and protogynous sex change have
evolved synergistically following predictions of the SAM.
However, for many animal clades, the behavioral, ecolog-
ical, and evolutionary underpinnings of sequential her-
maphroditism have yet to be described. The restricted
expression of sequential hermaphroditism among verte-
brates suggests that plastic sex-determination mechanisms
that are not strictly genetically predetermined may be a
necessary precondition for mating and social systems to
alter the strength of selection in favor of sex change. The
development of teleost gonads from a single type of tis-
sue, the peritoneal epithelium, rather than from two ger-
minal layers (the medulla and cortex) as in most other
vertebrates (Devlin and Nagahama 2002), likely allows for
evolutionarily labile traits like mating behavior to alter the
strength of selection and affect transitions in sex alloca-
tion. Therefore, we predict similar evolutionary dynamics
between mating and sex systems in animal clades with
similarly plastic sex determination. It is our hope that this
work will spark new research and discussion about the
evolutionary interplay between reproductive and social
systems.
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