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Abstract.—Rates of phenotypic evolution have changed throughout the history of life, producing variation in levels
of morphological, functional, and ecological diversity among groups. Testing for the presence of these rate shifts is
akey component of eval uating hypotheses about what causes them. In this paper, general predictions regarding changes
in phenotypic diversity as a function of evolutionary history and rates are developed, and tests are derived to evaluate
rate changes. Simulations show that these tests are more powerful than existing tests using standardized contrasts.
The new approaches are distributed in an application called Brownie and in r8s.

Key words.—Brownian motion, Brownie, comparative method, continuous characters, disparity, morphological evo-

lution, rate.

Received March 8, 2005.

All five extant flamingo species are long-legged filter feed-
ers, whereas their sister group, consisting of twenty species
of grebes (Van Tuinen et al. 2001; Chubb 2004; Mayr 2004),
feed on prey ranging from fish and squid to minute inver-
tebrates (Fjeldsa 1983), and show a variety of body and bill
shapes. Methods to test whether the difference in species
number between flamingos and grebes arose by chance or
reflects differences in diversification rates have been devel-
oped (Slowinski and Guyer 1989; Nee et al. 1992; Hey 1992;
Harvey et al. 1994). These methods are aimed at discovering
factors affecting diversification. But there are also undoubt-
edly factors that led to the difference in variability of eco-
logically important traits within these two groups. This paper
is concerned with hypotheses about factors that lead to dif-
ferences between groups in phenotypic and biological di-
versity, as opposed to species richness.

There are many potential hypotheses regarding factors that
can affect the rate of evolution of phenotypic characters
(which include morphological, behavioral, physiological,
biochemical, and ecological traits). For example, once wings
replaced legs as the primary means of locomotion in birds,
newly less constrained legs may have begun to evolve new
shapes more rapidly (Gatesy and Middleton 1997). The evo-
lution of asexuality may reduce the rate of genome size evo-
lution. The invasion of a new, competitor-free island may
increase the rate of evolution of feeding structures. These
hypotheses all attempt to relate a change in some aspect of
the biology of the lineage with a change of the rate of evo-
lution of a continuous character based on an idea about how
evolution works. Hypotheses can also be generated from ob-
servations of patterns of diversity instead of predictionsbased
on a mechanism. Grebes appear to have more interspecific
variation in bill dimensions than flamingos: this may reflect
a faster rate of bill evolution, or perhaps the grebe species
have been evolving independently for more time than the
flamingo species.
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In this paper, we develop and implement new methods to
make inferences regarding these questions. Basic results con-
cerning character evolution on trees are presented. Our meth-
ods areillustrated using an example of genome size evolution
in angiosperms.

SoME BAsic PROPERTIES OF CHARACTER EvoOLUTION
ON TREES

Disparity is commonly measured as variance of the states
of the taxa (so higher disparity meansthetaxaarelesssimilar
for that particular character). The observed disparity isafunc-
tion of many factors, such asthe rate of phenotypic evolution,
the amount of time the group has been evolving, and the
relationships of the taxa. To examine any one factor, such
as the evolutionary rate, a model must be used to control for
the other factors, such as the phylogeny. A reasonable model
to usein the case of phenotypic evolution is Brownian motion
(BM). This is the standard model for continuous character
evolution, used in independent contrasts (Felsenstein 1985)
and estimation of ancestral states (Schluter et al. 1997). In
Brownian motion, at each instant in time the state of a char-
acter can increase or decrease. The magnitude and direction
of these shifts are independent of the current state of the
character and have a net change of zero. Just as a bell curve
is often a good fit to the distribution of a character within a
population, because the state of the character for each indi-
vidual is the result of the addition of many independent fac-
tors (Central Limit Theorem), the change of the state of a
character as a result of the action of many displacements is
often approximated well by Brownian motion. Brownian mo-
tion does not necessarily imply aprocess of neutral evolution,
such as genetic drift (contra Butler and King 2004). Any
process that creates displacements meeting the Brownian mo-
tion assumption is appropriately modeled by a Brownian mo-
tion process. For example, processes such as fluctuating di-
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rectional selection (where the optimal value is allowed to
change), punctuated change (long periods of stasis inter-
rupted by abrupt change), and genetic drift all result in the
same covariance structure as simple Brownian motion (Han-
sen and Martins 1996).

On the other hand a Brownian motion model may not be
appropriate when its assumptions are violated. For example,
a continuous character evolving by Brownian motion should
have its chance of increasing or decreasing in state be in-
dependent of its current value. This is not the case if the
character state is near its natural limits (a leg of length 0.5
mm cannot decrease by 1.0 mm, but a leg of length 6.0 mm
could). Transforming the character (taking the log of leg
length, for example), may be appropriate in such instances
but is not always adequate. Brownian motion isalso generally
not the best model when there is consistent selection towards
a single optimum trait value (better fit by an Ornstein-Uhl-
enbeck (OU) model (Hansen 1997; Butler and King 2004)).

Brownian motion also has a deficiency as a model in that
it does not explicitly model a particular process. Finding that
one group has a higher rate of Brownian motion than another
does not reveal whether this is due to drift happening more
quickly as aresult of smaller population size, more changes
in the location of an adaptive peak due to environmental
change, or more frequent shiftsin character state due to com-
petition following speciation.

Even under simple Brownian motion models, the evolution
of continuous characters on trees has some nonintuitive prop-
erties. For example, there has been uncertainty about which
aspects of the phylogeny affect the expected phenotypic var-
iation (Purvis 2004; Ricklefs 2004). Consider two sister
groups with the same crown group age. The clade with the
higher number of species has a higher estimated diversifi-
cation rate, but thisis not the case for disparity. For disparity,
even with the same number of taxa in the two clades, the
group with the higher phenotypic variance can actually have
alower rate of phenotypic evolution under asimple Brownian
motion model (Fig. 1), depending on the distribution of node
ages on the tree. Under Brownian motion, the relationship
between expected disparity (expected sample variance), the
tree, and the rate of phenotypic evolution (derived in the
Appendix) is:

1

E(disparity) = ¢? %tr(C) - m1'61 D

where, following notation in Martins and Hansen (1997) and
Garland and Ives (2000), N is the number of taxa, C is the
N by N matrix in which the i-jth entry is the distance from
the root node to the most recent common ancestor of taxa i
and j (assuming branch lengths are proportional to time, this
is the time between the root and the most recent common
ancestor of i and j), o2 isthe rate of character evolution, tr(C)
is the trace of the matrix (in this case, the sum of the heights
of each taxon above the root), and 1 is a column vector of
ones of height N.

This equation allows numerous inferences about the re-
lationship between the tree, rate, and phenotypic disparity.
The expected amount of disparity for a clade is a function
of three factors: the rate parameter (o2), the time to the most
recent common ancestor of the clade [assuming the taxa are
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Fic. 1. Equation 1 was used to predict variance in terminal trait
values within clade 1 and clade 2 through time. For clade 2, the
Brownian rate parameter was always 1.0. For clade 1, the rate
parameter took on values of 1.0 (the lowest line), 1.2 (the middle
line), and 1.425 (the top line). Note that though the two clades have
the same age and same number of taxa, clade 2 has a higher tip
disparity when the rates of morphological evolution are equal and
even when clade 1 has a 20% faster rate. Clade 1 has a greater
amount of tip disparity when its rate is greater than 1.425 times
that of clade 2.

contemporaneous] ((1/N)tr(C)), and the average entry in the
covariance matrix ((1/N2)1'C1). Under the Brownian motion
model, these covariance terms are proportional to the amount
of time between the most recent common ancestor of a pair
of taxa and the root. Higher rates of phenotypic evolution
(o2) on a given tree result in more dissimilar taxa. All else
being equal, older clades should have more phenotypic var-
iation than younger clades. Clades of a given age where most
speciation events have happened early (more ‘‘starlike’’
trees) should have higher disparity than clades where most
speciation events occur late. In other words, as internal
branches get shorter and terminal branches longer, shared
covariance (the off-diagonal elements in C) decreases, di-
agonal elements remain the same, and thus tip variance in-
creases.

Patterns of change of disparity through time are also in-
formative. The effect of speciation events on disparity is
complex, with results depending on which lineages speciate
when. The average time between the terminal taxa and the
root ((1/N)tr(C)) is the same on a tree terminated just before
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and a tree terminated just after the instantaneous speciation
event, since no time has elapsed. The average entry in the
covariance matrix will generally change with a speciation
event. A speciation event introduces aduplicate of an existing
species, creating a species pair with the maximum possible
covariance. This tends to increase (1/N2)1'C1 and thus de-
crease the expected disparity. Thus, most of the speciation
events for clade 1 in Figure 1 result in an instantaneous drop
in the expected disparity immediately after speciation. How-
ever, the covariance of this new taxon with the other taxain
the tree also matters. In clade 1, the early lineage sister to
the rest of the lineages has below average covariance (zero
covariance with every other species). Thus, when it speciates
at time 0.9, a new species is created that also has below
average covariance, reducing (1/N2)1'C1 more than covari-
ance between the two daughter speciesincreases (1/N2)1'C1.
This results in an increase in predicted tip disparity imme-
diately after that speciation event.

The story is even more complicated when extinction is
considered. In the absence of extinction the time until the
most recent common ancestor for the contemporaneous spe-
cies increases through time. This will increase the (1/N)tr(C)
termin equation 1 and thustend to increase expected disparity
as the clade evolves (though note that speciation events may
intermittently reduce expected disparity). With extinction,
this need not be the case: the extinction of some taxa may
decrease the time to the most recent common ancestor for
the clade. For example, if, at time 0.9 on Figure 1 for clade
1, the lineage that speciated went extinct instead, the most
recent common ancestor of the remaining taxa would occur
at time 0.3, not time 0. Groups that diversify quickly (high
ratio of speciation to extinction rates) and then reach an equi-
librium species diversity would be expected to show an in-
crease in disparity until it reached a plateau. Under more
complex speciation or extinction models, disparity may even
decrease through time, even when the rate of evolution does
not change. Figure 2 shows a disparity-through-time plot for
a diversification model in which a clade starts with one spe-
cies, increases to an equilibrium value, and then fluctuates
in species number near thisvalue. Throughout the simulation,
the rate of morphological evolution (under the simple Brown-
ian motion model) remains constant. Initially, disparity in-
creases but then it also plateaus. Halfway through the sim-
ulation, the magnitudes of the speciation and extinction rates
are both increased (in other words, the turnover rate is in-
creased). Although the equilibrium number of species in the
clade and the rate of morphological evolution remain the
same, disparity decreasesto anew, lower plateau. Thisoccurs
because the higher turnover rate results in a lower time to
most recent common ancestor of the surviving species at any
one point in time, so there is less time over which to evolve
disparity.

These examples (al so see simulations by Foote 1996) dem-
onstrate that phenotypic disparity and rate of phenotypic evo-
lution are distinct characteristics, and a phylogeny is needed
to link the two. For example, the pattern of disparity increas-
ing to a plateau has often been observed in fossil taxa (re-
viewed in Foote 1997 and Zelditch et al. 2004) but inferences
about rate have been drawn without phylogenetic context,
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Fic. 2. Variance through time plot for 100 simulations of Brown-
ian character evolution on trees generated under a birth-death model
(error bars are one standard deviation over the simulations). In the
first half of the total time, the clade is constrained to have a spe-
ciation rate of 1.0 and extinction rate of 0.0 when there are fewer
than 10 taxa; a speciation rate of 1.0 and an extinction rate of 1.0
when there are 10 or 11 taxa; and a speciation rate of 0.0 and
extinction rate of 1.0 when there are more than 11 taxa. For the
second half of the simulation, the same model is used but with rates
five times those in the first time period. This model has the effect
of keeping the number of coeval taxa between 9 and 12 once at
least 9 taxa evolve from the initial taxon. Notice the initial increase
in variance, then a constant plateau of variance through time. The
increase in speciation and extinction rates halfway through the sim-
ulation result in shorter species coal escence times and consequently
less variance in tip values.

which is sometimes unavailable for fossil taxa. The consid-
erations described above suggest the risks of doing so.

METHODS

To compare rates of evolution, one must estimate rate in
two or more groups and then have a method to determine
whether the observed differences are meaningful. There are
several methods available to estimate phenotypic rates of
evolution, such as generalized least squares (Martins 1994),
standardized contrasts (Garland 1992), or Lynch’s estimator
(Lynch 1990). We have implemented a likelihood estimator
of rate and developed new tests to compare the rates of phe-
notypic evolution on two or more parts of a tree.

Phenotypic characters are assumed to evolve according to
Brownian motion. The maximum-likelihood (ML) estimator
of the rate of phenotypic evolution under Brownian motion
is

— -1 _
52 - X = EQ)I'CX — E(X)] @
N

where X is the column vector of tip observations (observed
states of the terminal taxa) and E(X) isthe vector of estimated
expected tip values. This ML estimator is very similar to the
unbiased estimator of Garland and Ives (2000), equation B3,
but with N instead of (N — 1). Because, under Brownian
motion, the expected net change from the ancestral state of
the clade is zero, E(X) is just a vector of the estimated state
at the root, &. From Blomberg et al. (2003), equation A16,
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TABLE 1.
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Precision, bias, and mean squared error of the rate estimator (eq. 2). Tree shapes used were a star phylogeny (unresolved

bush), a pectinate tree (a comb) with all internal branches of the same length, and a balanced tree with all branches of the same length.
All trees had aroot to tip length of 1. For each tree, 1000 datasets were simulated under a Brownian motion model with a rate parameter
of 1.0 and then analyzed using Brownie 1.0. Precision is the variance of the rate estimates (lower is better), bias is the mean observed
rate estimate minus the true parameter value (lower is better), and mean squared error (also known as accuracy) is the precision plus

the square of the bias.

Precision Bias Mean squared error

Taxa Star Pectinate Balanced Star Pectinate Balanced Star Pectinate Balanced
4 0.345 0.394 0.366 —-0.257 -0.221 -0.241 0.411 0.443 0.424
8 0.252 0.215 0.205 —0.081 -0.132 —0.150 0.259 0.233 0.227
16 0.109 0.106 0.118 —0.083 —-0.067 -0.071 0.116 0.111 0.123
32 0.061 0.062 0.061 —0.035 —0.040 —0.026 0.063 0.064 0.062
64 0.030 0.031 0.030 —-0.014 —-0.011 —0.019 0.030 0.031 0.031
128 0.016 0.015 0.016 —-0.013 —0.016 —0.005 0.016 0.015 0.016

the maximum-likelihood estimate of a = (1'C-11)-1
(1’C-1X). Pagel (1998) outlines a similar approach to esti-
mating rate and ancestral state. This estimator (eq. 2) assumes
trait evolution by Brownian motion and that the topology,
branch lengths, and trait values are known exactly.

Table 1 provides information on the bias, precision, and
mean squared error of the rate estimator. Asis common with
likelihood estimators, the rate estimator is biased, in this case
returning estimates that are too low. Thus, for a four-taxon
tree (or subtree), the estimated rate is about 25% |lower than
the true rate, but this bias drops as the number of taxa in-
creases. The relative error shows similar behavior. This sug-
gests caution when comparing rate estimates for groups of
different sizes, where at least one of the groups is small: all
else being equal, the smaller group will tend to have a some-
what lower rate estimator with greater uncertainty.

Once rates are estimated, it becomes possible to infer
whether they are meaningfully different. We have devel oped
two different approaches. The ‘*noncensored’’ approach as-
signs each branch (or different portions of a branch) a rate
parameter (c2). In the simplest case of testing for a single
change in rate, branches would be assigned either of two rate
parameters. In the approach implemented here, the stem
branch of a clade (the branch connecting the most recent
common ancestor of the clade to the rest of the tree) was
assigned the same rate parameter as the clade’ s crown group
branches. This decision was arbitrary: the stem branch could
have been assigned the ancestral rate parameter, or the point
at which the rate parameter changed could be optimized using
an additional parameter. The likelihood of a model in which
the rate parameters are allowed to vary may be compared to
the likelihood of the model in which the rate parameters are
constrained to be equal. Parameters are estimated by nu-
merical solution of the appropriately modified likelihood
function. This function is the multivariate normal distribu-
tion, and the log likelihood of the multivariate normal ob-
servations given the estimated rate parameter, observed states
of the taxa, tree, and inferred ancestral state is

u 1 g
Bexp{—zlx — ECON'(V) X — E(X)]}g
log(L) = Iogg 2 % de(Y) E. 3

In the case of asingle rate parameter, the variance-covariance

matrix V = ¢2C. For multiple rate parameters, each element
V;; is the sum of the branch lengths between the root and
the most recent common ancestor of taxon i and taxon j, with
the length of each branch segment being the duration of that
segment multiplied by the rate parameter for that segment.
For example, in Figure 3, the variance of taxon 1 (V44) is
the amount of time spent in rate parameter oz (10 my + 30
my = 40 my) times o plus the amount of time spent in rate
parameter og (10 my) times og. Thus, V4, = 40 oz + 10
og. The covariance of taxon 1 and taxon 2, element V5, is
the length of shared branches spent in rate parameter o3 (30
my) times oz plus the amount of time spent in rate parameter
og (10 my) times og. Thus, V,, = 30 02 + 10 og. Also note
that Vi, = V5. The likeliest ancestral state for the whole
treeisa = (1'V-11)-1 (1'V-1X). If thereis onerate parameter
assigned to the tree, the ancestral state estimate is indepen-
dent of the value of this parameter, but the parameter values
(specifically, the ratio of parameter values) do affect this
estimate if there are multiple rate parameters. To calculate
the likelihood of a model that fixes one rate parameter across
the entire tree, al the rate parameters are set to be equal,
while the multiparameter model scoreis calculated by allow-
ing the rates to vary.

A ‘‘censored’’ approach, with deletion of the relevant
branch and modification of the variance-covariance matrices,
allows analytical solutions and makes no assumptions about
where or how the rate change occurs on the branch other
than that the change happened somewhere on that branch. In
this approach, branches on which rate parameters change are
deleted from the tree, yielding two or more subtrees. As in
the noncensored approach, the rate parameters can be set to
equal each other or allowed to vary. Note that regardless of
whether the rate parameters are set equal or allowed to vary,
the ancestral states for the subtrees are estimated indepen-
dently, unlike the noncensored case.

Deleting one or more branches and treating the resulting
subtrees as independent is admittedly somewhat counterin-
tuitive. The states at the beginning and end of the deleted
branch certainly are correlated. The noncensored approach
assumes that this correlation can be known and is a simple
function of the duration of the branch and the rate parameter.
In contrast, the censored approach chooses to remain agnostic
about this correlation, and instead estimates an additional
parameter for the state at the end of this branch given in-
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Non-censored approach
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Fic. 3. Example showing the details of calculation for the noncensored and censored tests. The noncensored test uses the entire variance-
covariance matrix shown with equation 3 to calculate the likelihood. One ancestral state is estimated for the entire tree. The optimal
rate parameters under the unconstrained model must generally be estimated numerically (different rate parameter values are tried until
the likelihood of the model is maximized). In contrast, the censored test analyses each subtree separately (indicated by the bold lines
in the matrix and ancestral state vector). Each subtree has just one Brownian motion rate parameter, the value of which can be calculated
analytically using equation 2 (the ancestral state for each subtree is also calculated analytically). In the simple example here, both the
censored and noncensored tests would compare the likelihood of a model where 0% and og were set equal to each other with a model

where the rates were free to vary.

formation from only the subtree. This comes at a cost (an
additional nuisance parameter), but this does not appreciably
affect the power of the test (see Figure 4). The benefit is that
no assumptions are made about the process occurring on the
deleted branch: the result is independent of whether the
change in rate was instantaneous or a gradual shift, whether
the rate change occurred early or late on that branch, and
whether the state of the character changed in an unusual
manner along that branch.

We use two statistical approaches to testing for different
rates of evolution. In a conventional hypothesis-testing like-
lihood ratio approach, one wants to accept or reject the null
hypothesis that the rate of evolution is the same everywhere
on the tree. The test statistic 2((—109(Lsimpler mode)) —
(—1og(Lcomplex moder))) has approximately a chi-squared dis-
tribution with the degree of freedom equal to the difference
in the number of free rate parameters in the two models
(Casella and Berger 2002). A significant likelihood ratio test
rejects the null model. However, because the chi-square ap-
proximation is nonconservative with small numbers of taxa,
a parametric test, involving simulating data on the tree under
the null model and comparing the empirical likelihood ratio
with a distribution of likelihood ratios under the null model,
has also been implemented and should generally be preferred.
The likelihood-ratio test approach has a few disadvantages.
Itislimited to comparison of nested models. Testing multiple
models is also somewhat difficult using this approach.

An alternative to hypothesis testing is a model selection
procedure that seeks a model that well approximates the in-
formation in the data (Burnham and Anderson 2002, p. 136).
The distance between the true model and the approximating
model is approximated by the Akaike Information Criterion
(AIC) value (Akaike 1973), or the second-order information
criterion (A1C,, Sugiura 1978); the best model isthe one with
the lowest value. The AIC. is recommended (Burnham and
Anderson 2002) when the sample size (in this case, the num-
ber of taxa) is less than forty times the number of estimated
parameters.

A critical measure of performance for atest isits statistical
power (related to type Il error) at agiven level (typel error).
We compared the power of the parametric test, chi-square
test, and Garland’s test (1992). Power (probability of cor-
rectly accepting the non-null hypothesis) is not a relevant
question for model selection criteria, so the AIC and AIC,
were not used for this comparison. Each tree consisted of
two identical clades as sister groups. Three shapes for the
clades were used: pectinate with all internal branches of the
same length; balanced with all branches in a clade of the
same length; or (near) star phylogenies, with internal branch-
es of trivial length. For each of the combinations of the fol-
lowing parameters and for each tree shape, 100 simulations
were run in the new Matlab package Brownie 1.0 (see Pro-
gram Note below). The rate parameter doubled in value at
the base of the stem of the second clade. Five hundred da-
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Fic. 4. Power of tests to compare rates of evolution: data were
simulated and analyzed as described in the text. For each set of
simulation settings and for each test, the proportion of P-values
below an alpha level of 0.05 was measured to calculate the power
of the test. The average power of each test across all topologies of
a given number of taxa was calculated by averaging these values
and graphed. Similar results are obtained when power for different
tree shapes and stem lengths are not pooled. ‘‘Censor chi’’ is the
power for the censored test described here, with P-val ues cal cul ated
based on a chi-square distribution. ‘*Censor sim’’ is the power for
the censored test with P-values based on parametric bootstrapping.
‘“Noncensor chi’’ is the power for the noncensored test with P-
values determined based on the chi-square distribution. ‘* Contrast
rank test’’ represents the power under a test comparing the stan-
dardized contrasts of the two clades using the Mann-Whitney U
test. Note the greater power of the tests developed here.

tasets were simulated under the null model for each com-
bination of simulation parameters and P-values were deter-
mined under the censored parametric bootstrapping approach;
this null distribution was used for each of the 100 datasets.
Each of the 100 datasets was used in Brownie to calculate
P-values under the chi-square and parametric bootstrapping
methods.

Each unique tree was saved as a distance matrix in aNexus
batch file by Brownie. PAUP version 4b10 (Swofford 2003)
was used to save trees in formats suitable for loading into
r8s 1.70 (for the noncensored test) and econtrast (Felsenstein
2003, ported to command line version as part of the EM-
BASSY package of EMBOSS (Rice et a. 2000)) for the
Garland tests. The 100 datasets for each set of simulation
parameterswere saved in formats appropriate to r8sand econ-
trast using Matlab and Perl scripts. For econtrast, the tree
and dataset were split to correspond to the two clades to
enable contrasts to be computed independently for each clade
(this does not change the contrast values in a sister group
comparison). Output from r8s and econtrast was processed
using Perl scripts; Garland’'s (1992) tests of absolute values
of standardized contrasts were implemented in Matlab and
P-values for the econtrast output generated using these func-
tions. P-values were calculated using the chi-square distri-
bution for the noncensored test results. For each set of sim-
ulation settings and for each test, the proportion of P-values
below an alpha level of 0.05 was measured to estimate the
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TABLE 2. Levels(type | error) of the testsimplemented here. Five
hundred simulations were done for each set of parameters used to
generate Figure 4, but simulated under a null model. ** Censor chi’’
is the power for the censored test described here, with P-values
calculated based on a chi-square distribution. *“Censor sim” is the
power for the censored test with P-values based on parametric boot-
strapping. ‘“Noncensor chi’’ is the power for the noncensored test
with P-values determined based on the chi-square distribution.
‘‘Contrast rank test” represents the power under tests comparing
the standardized contrasts of the two clades using the Mann-Whit-
ney U test as described in Garland (1992).

ntax Censor chi Censor sim Noncensor chi Contrast rank
16 0.064 0.035 0.067 0.053
32 0.061 0.055 0.061 0.050
64 0.045 0.044 0.045 0.039

128 0.061 0.058 0.061 0.048

power of the test. The average power of each test across all
topologies of a given number of taxa was calculated by av-
eraging these values and graphed in Figure 4. The power of
the tests rose approximately linearly with the number of taxa.
The most powerful approaches were the censored test with
a chi square distribution and the noncensored test with a chi
square distribution. The parametric bootstrapping test under
the censored model was more powerful than the Garland rank
test at low numbers of taxa and rose to be nearly as powerful
as the chi-square tests at greater numbers of taxa.

A difference in apparent power can be due to incorrect
levels. anonconservative test (one with elevated type | error)
may appear more powerful than atest with appropriate level.
To test this, the procedure above was repeated but with 500
datasets generated under the null model. Table 2 indicates
that all the tests have approximately the appropriate Type |
error (desired level of 0.05), though the chi-square tests tend
to have the highest level, which may explain their higher
apparent power.

Incorporating uncertainty in topology and branch lengths
when using comparative methods has become increasingly
important to researchers. For the approaches devel oped here,
this can be accomplished by performing analyses on a set of
trees, which can be trees generated by a bootstrap search,
post-burn-in Bayesian trees (also see Huelsenbeck and Ran-
nala 2003), or a credible set of trees. Tree weights can be
used to calculate weighted averages of parameter estimates
or other results across the set of trees. Note that these trees
should have sensible branch lengths (typically branch lengths
proportional to time, but in some cases branch lengths pro-
portional to number of generations or estimated number of
speciation events). Although branch lengths are often in-
vented for use in comparative methods when topologies alone
are available, such a technique in the present case is inad-
visable because transformation of informative branch lengths
underlies the model.

Our approach assumes that characters evolve according to
a Brownian motion process within each section of the tree.
This assumption is testable using existing techniques, al-
though these should be modified to work on the independent
subtrees (censored case) or use the tree with branch lengths
multiplied by the optimal rate parameter values under the
multirate model (noncensored case). For example, Pagel
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(1994, 1998, 1999) provides a set of parameters (k, 3, and
\) to transform trees to meet the Brownian motion assump-
tion; values not significantly different from 1 do not reject
the Brownian motion assumption. Butler and King's (2004)
approach may also be used to compare the models devel oped
in this paper with an Ornstein-Uhlenbeck process. Brownie
2.1, still in development, will include the ability to do this
comparison and do other comparisons with OU and BM mod-
els. As with other comparative methods that assume Brown-
ian motion, traits may need to be appropriately transformed.
For example, the methods here assume that an increase by a
particular amount is equally likely regardless of the initial
trait value. A trait such as leg length might be better fit by
taking the log of length rather than the untransformed value
(aleg of length 2 cm and one of length 100 cm may have
an equal chance of lengthening by 10%, but not of length-
ening by 3 cm).

EXAMPLE

To illustrate the method with a worked example, we an-
alyze the evolution of genome size in angiosperms. The evo-
lution of genome size in angiosperms has been the subject
of several papers (Soltiset al. 2003; Knight et al. 2005; Leitch
et a 2005), which typically focus on ancestral states, not
rates of evolution. These analyses have suggested that many
angiosperm groups had small ancestral genome sizes. Large
genome sizes have evolved a few times in monocots and in
the Santalales (a clade within eudicots) but remain small in
other groups. A natural hypothesis is whether this higher
range of values in these two clades reflects higher rates of
genome size evolution.

Angiosperm genome sizes (1C values, the amount of DNA
amount in the unreplicated gametic nucleus, in picograms),
were downloaded from the Plant C-values Genome Database,
Release 4.0 (Bennett and Leitch 2005; Zonneveld et al. 2005).
To test for different rates of evolution, an estimate of the tree
with informative branch lengths (generally, proportional to
time) is needed. The Soltis et al. (2000) dataset was used for
this purpose. Taxa (genera) not present in the Genome Da-
tabase were excluded. This left 219 taxa, of which seven
were outgroups (gymnosperms). Sites for which the align-
ment was judged too uncertain were excluded, as was the
phylogenetically problematic taxon Ceratophyllum, which
has historically been a‘‘wild-card’’ taxon in many analyses.
A neighbor-joining search was performed in PAUP 4.0b10
(Swofford 2003). The resulting tree was used to optimize
parameter values for an HKY + gamma likelihood model.
These model settings were used in 150 likelihood bootstrap
replicates (each starting from a neighbor-joining tree and
limited to 4000 rearrangements to speed the search). The
bootstrap searches enforced constraints on the monophyly of
angiosperms, monocots, eudicots, and Santalales; the mono-
phyly of these groups is uncontroversial and wellsupported
in this dataset, at least using parsimony (Soltis et al. 2000).
Ensuring that all the resulting trees have these groups makes
later analysis easier. These bootstrap trees were brought into
r8s (Sanderson 1997, 2002), outgroups deleted, three age
constraints assigned (for angiosperms, monocots, and eudi-
cots, based on the FOUR123 F+ estimates from Magallon
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and Sanderson 2005), and converted to ultrametric treesusing
the Langley-Fitch method with the truncated Newton algo-
rithm. R8s omits bootstrap weights from tree output, so these
were hand entered based on the weights of the input trees (if
N trees are found in asingle bootstrap replicate, eachreceives
a weight of 1/N—in the likelihood bootstrap done here, N
was no larger than three). Nonbootstrap tree searches were
done using the same model as in the bootstrap search, using
parsimony, neighbor-joining, and random taxon addition to
get starting trees. The best tree from these searches was also
converted to a chronogram using r8s.

The average entry in the Plant Genome Database for each
taxon was used as its state. Two sister taxa, Poncirus and
Citrus, had zero length terminal branches but different states.
This causes an error in the likelihood calculations (because
the observations are assumed to be without error, this change
of state over zero time implies infinite rate) and thus one of
these taxa was excluded and the other given the mean trait
value of the two. Genome size is positively skewed (most
plants have small values, with a few large outliers). After
some initial data exploration, the log of genome size was
used in place of raw genome size. Although previous analyses
have not transformed genome size in this way, this is more
appropriate than using untransformed values when estimating
rate or state. Genome size may evolve through many pro-
cesses, ranging from genome duplication to insertion or de-
letion of single basesin noncoding regions. For most of these
processes, change will be better represented as a proportion
of genome size than as a change of raw size. For example,
a gain or loss of 10% is expected to be equally likely in a
genome of size 7 pg as in a genome of 40 pg, but thisis not
true for the gain or loss of 5 pg over some arbitrary time
period. Under the Brownian motion model used in this ap-
proach (and in approaches for estimating ancestral states of
continuous characters), data should be transformed so again
or loss by a given amount is equally likely regardliess of
starting state, which is accomplished by taking the log of
genome size (this has the effect of improving the fit of the
data given the model by approximately 300 log likelihood
units). Log-transforming data is often appropriate when the
character is constrained to be nonnegative, as in this case.

There are four groups to which we could reasonably con-
sider assigning different rate parameters to test our hypoth-
eses. Santalales, eudicots excluding Santalales, monocots,
and angiosperms excluding monocots and eudicots. We could
also choose to exclude some of these groups (e.g., test for
different rates between Santalales and other eudicots only,
excluding monocots and other angiosperms). There are 50
possible models under these conditions, although only 35 in
which there are at least two rate categories on the tree. If
zero represents taxon set exclusion from the model, and taxon
sets assigned to the same rate parameter have the same num-
ber, we can represent the inclusion and rate parameter of
Santal ales/other eudicots/monocots/other angiosperms using
afour digits. For example, a model that excluded Santalales
(0), included other eudicots (rate parameter 1), included
monocots with their own rate parameter (2), and set the re-
maining angiosperm rate to be equal to the eudicot rate (1),
could be represented as 0121. Some of these models may be
nested (for example, 1110, 1120, 1210, and 1220 are all
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TaBLE 3. Rate comparisons using the hypothesis-testing approach.
Model symbols are as described in the text [S = Santalales, E =
eudicots excluding Santalales, M = monocots, and A = angio-
sperms excluding monocots and eudicots]. Parametric bootstrapping
tests used 1000 replicates for the optimal tree, and 200 replicates
per bootstrap tree. The first P-value in each cell is that for the
optimal tree; the second is from the weighted average of the boot-
strap trees.

Null Other .
model model . Parametric
Chi-square bootstrap
Sema Sema P-value P-value Conclusion
1100 1200 0.0007 (0.0007) 0.04 (0.04) Marginal
1110 1230 0.0006 (0.0009) 0.04 (0.03) Marginal
1111 1234 0.0008 (0.0004) 0.07 (0.04) Marginal
1232 1234 0.0018 (0.0015) 0.06 (0.05) Marginal

nested in 1230). Others may have the same set of taxa but
not be nested within each other (0122 and 0121) and thus
only be comparable using AIC. Some may not even include
the same taxa (1200 and 0121) and therefore are not easily
comparable. We chose to analyze 1100 versus 1200, 1110
versus 1230, and 1111 versus 1234, and 1232 versus 1234
using a hypothesis-testing approach, and evaluate those mod-
els, plus 1120, 1220, 1212, 1123, 1222, and 1121 using a
model selection approach. All these tests were performed in
Brownie 2.0 using the censored test. Results, which are based
on the maximum likelihood tree and the weighted average
across the transformed bootstrap trees, are summarized in
Tables 3 and 4. Santalales had the highest rate of evolution
by far (rate of 0.098 on the ML tree, weighted average across
bootstrap trees of 0.095, range across bootstrap trees of
0.077-0.18), followed by monocots (0.017, 0.016, 0.14—
0.026), remaining eudicots (0.010, 0.009, 0.008-0.027) and
remaining angiosperms (0.009, 0.007, 0.005-0.009). Like-
lihood ratio tests (Table 3) showed strong disagreement be-
tween the chi-square P-value and the parametric bootstrap p
value, with the latter often on the border of significance while
the former always indicated that the more complex model
should be chosen. This may be due to the small number of
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samples (two) in the Santalales clade, which tends to make
the chi-square test nonconservative. Analysis of the AIC and
AIC, results suggests that Santalales have a different rate of
genome size evolution from most other flowering plants, that
there is some evidence to suggest that monocots also have a
higher rate (but not that their rate is necessarily different
from that of Santalales), and that remaining eudicots and
remaining angiosperms do not differ strongly in rate.

Discussion

Comparison of the Censored and Noncensored Approaches

Each of the approaches developed here will be useful in
different contexts. They are both appropriate when investi-
gating how a change in state in one discrete character affects
the rate of evolution of another character, but have different
benefits and costs. If the placement of this change along a
branch or the mechanism of rate change (instantaneous
change or gradual change from one rate to the other) is un-
certain, the censored approach removes the need to make
assumptions about this process: the branch on which the rate
change is postulated to occur is removed from the analysis.
A disadvantage of this approach is that the groups being
examined, although they may be polyphyletic, must consist
of paraphyletic groups of at least two taxa (assigning a rate
to only internal branches, e.g., is not possible). In the non-
censored approach, painting rate parameters on different
branches (or parts of different branches) can be done, at the
cost of making assumptions about the manner of the rate
change. The noncensored approach can allow more flexible
tests, such as testing whether the rate of character evolution
in the period after a mass extinction is higher than the rate
before the mass extinction.

Comparison with Other Methods

Several methods have been advanced to examine rates of
continuous character evolution, including Lynch (1990), Gar-
land (1992), Foote (1993), Martins (1994), Pagel (1994,

TaBLE 4. Rate comparisons using Akaike Information Criterion. Values are only comparable when the included taxa are identical. Note
that, when all the groups are included, the most complex model was not the best model. The first value in each cell is that for the optimal
tree; the second is from the weighted average of the bootstrap trees. K is the number of free parameters (rate(s) and ancestral states) for

each model.
Model

 SEMA ~InL AIC AlC, K Conclusion
1100 172.839 (172.328) 9.5 (10.2) 9.3 (10.1) 3 Different rates for Santalales and other eudicots
1200 167.106 (166.232) 0 (0) 0 (0 4
1110 270.414 (270.105) 10.7 (11.5) 10.5(11.3) 4 Best model has Santalales, other eudicots, and monocots having
1120  268.790 (268.434) 9.5 (10.2) 9.3 (10.1) 5 different rates, (1230) but a model with eudicots and mono-
1220  265.938 (265.346) 3.8 (4.0) 3.6 (3.9) 5 cots having the same rate (1220) is not much worse.
1230 263.057 (262.338) 0 (0) 0 (0) 6
1111 303.444 (303.943) 12.4 (13.9) 12.2 (13.6) 5 The most complex model (1234) is not the best (although it is
1121 301.267 (301.553)  10.1 (11.1) 9.9 (11.0) 6 close): a model where eudicots and other angiosperms (ex
1222  298.690 (298.818) 4.9 (5.6) 4.8 (5.5) 6 cluding monocots) are forced to have the same rate (1232) is
1212 297.849 (297.776) 3.2 (3.6) 3.1 (3.4 6 better. Restricting this model further to have Santales and
1123  300.808 (300.533) 111 (112.1) 111 (111 7 monocots have the same rate (1212) is not much worse.
1232 295.234 (294.995) 0 (0) 0 (0 7
1234  295.075 (294.437) 1.7 (0.9) 1.8 (1.0) 8
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1998, 1999), and Butler and King (2004). Lynch’sisthe only
method that scales interspecific variation as a function of
intraspecific variation. The model derives expectations from
neutral theory to link inter- and intraspecific variation, and
uses this theory to estimate whether there has been stabilizing
or diversifying selection on morphology for pairs of species
(also see Turelli et al. (1988) and Lande (1976, 1979) for
related approaches). Because Lynch’s method worksfor pairs
of species, the number of phylogenetically independent com-
parisons is approximately half the number of taxa (although
the paper actually does all pairwise comparisons). More im-
portantly, the rate estimates depend on knowing the amount
of intraspecific variation and having a model to link this to
interspecific variation. Intraspecific variation may be un-
known for many potential applications of this method, and
the link between intra- and interspecific variation is unclear
under many models. For example, if species mean phenotypes
are tracking moving adaptive peaks, the rate of movement of
these peaks strongly affects the rate at which interspecific
variation evolves but does not necessarily have alarge effect
on the intraspecific variation.

Garland (1992) suggests comparing the absolute values of
standardized contrasts in two clades using at-test or aMann-
Whitney U test (also known as the Wilcoxon rank sum test)
to test for significant difference in rate of evolution in two
clades. As shown in Figure 4, the approach developed here
is more powerful. A t-test would be inappropriate for the
simulated data, but if performed, is still less powerful than
the methods here. A likelihood, explicitly model-based ap-
proach is also potentially easier to extend than the standard-
ized contrasts approach, as model parameters can be added
in the future to make the model more realistic or to test for
non-Brownian processes, such as limits on character state
value, attraction to a mean value, or even repulsion in state
from co-occurring taxa. One current disadvantage of our ap-
proach, although it is shared with the standardized contrast
approach, is the assumption that trait values are errorless
observations, ignoring measurement error, variability within
the tip taxa, environmental effects on thetip values, etc. With
the standardized contrast approach, the rate estimate can
change with different rooting of the tree, but that is not the
case in the approach developed here. For example, a four
taxon unrooted tree [(A,B),(C,D)] with terminal branches of
length 1, internal branch of length 2, and terminal values for
the four taxa of 60, 50, 10, and 5 has an average standardized
contrast magnitude of 12.7 if midpoint rooted and 14.4 if the
root is placed halfway along the branch leading to taxon A,
whereas our method recovers the same rate in both cases,
regardless of rooting. Garland’s approach is most naturally
used for comparing ratesin different clades, although it could
likely be used with trees split into subtrees asin our censored
approach to allow comparison of a clade with a paraphyletic
group.

Foote, in severa papers (i.e., Foote 1993, 1994, 1995),
uses disparity through time plots to make inferences about
changing rates (or ‘‘step sizes'’) of morphological evolution.
These methods are widely used in paleobiology (e.g., Wesley-
Hunt 2005), and have highlighted the interaction between
extinction risk and morphology, the empirical pattern of dis-
parity through time, and the effects of morphological con-
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straints. Although the methods are informed by simulations,
the use of disparity alone, even with information on number
of taxa, is insufficient to adequately estimate rate. As dem-
onstrated above (e.g., eg. 1) and in other simulations (i.e.,
Foote 1996), a tree is needed to link disparity to rate. For
example, in our Figure 2 species diversity remained roughly
constant across the midpoint of the simulation, morphological
rate remained constant, but morphological diversity dramat-
ically decreased due to increased species turnover rate alone.
Recovering a resolved tree with informative branch lengths
for extinct organisms may be difficult, but using at |east some
portions of atree (such as ancestor-descendant pairs) is nec-
essary to make inferences about rate from observations about
disparity.

Martins (1994) developed a least squares method to esti-
mate the value of the Brownian motion rate parameter. She
discusses comparing rates in different clades, but does not
propose a test to determine whether the rate difference is
meaningful (although likelihood ratio tests are discussed el se-
where in the paper, in choosing between a Brownian motion
model and an Ornstein-Uhlenbeck model). Martins cautions
that least squares estimates of the Brownian rate parameter
may be nearly undefined if all branches are of equal length
due to the use of regression to optimize this parameter; the
approach devel oped here does not share this problem (aslong
as none of the variance-covariance matrices are singular).

Perhaps the most commonly used approaches for exam-
ining the evolution of single continuous characters are con-
tained in Pagel’s Continuous (Pagel 1994, 1998, 1999). Pa-
gel’ s approaches are similar to those developed here: param-
eters are used to transform a tree in various ways and the fit
of the characters to this stretched tree is evaluated using
likelihood. However, the approaches developed by Pagel use
the transformation parameters (k, 8, and \) across the entire
tree, instead of mapping them to different parts of the tree,
aswedo (i.e., adifferent rate parameter for clade A and clade
B).

Our paper’s approach is most similar to that developed by
Butler and King (2004). We can imagine a general model
(see Hansen 1997) in which each branch of a tree can have
its own optimal trait value, Brownian rate parameter, and
Ornstein-Uhlenbeck ‘‘rubber band’ parameter (which de-
scribes the strength of the ‘‘pull’’ towards a particular op-
timal value). Note that this most general model is far too
over-parameterized. The Butler and King approach restricts
the Brownian rate parameter to one (optimized) value across
the entire tree while allowing the other parameters to vary,
while our noncensored model sets the Ornstein-Uhlenbeck
rubber band parameter to zero while allowing the rate pa-
rameter to vary. The optimal trait value parameter has less
importance when the rubber band parameter is set to zero,
but can be considered to be the estimated state at the root of
the tree (noncensored model) or at the root of each subtree
(censored model). Our censored approach is distinct from
their approach in allowing us to ignore the process of change
on aparticular branch, rather than assuming an instantaneous
change from one set of parameter values to another, but the
censored approach may easily be adopted for their model, as
well. Eventually, we hope to implement the general model
described above, allowing tests to vary both the Brownian
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rate parameter and the OU rubber band parameter. Currently,
as the models implemented in Butler and King’s OUCH soft-
ware and Brownie are generally nonnested, a comparison of
their AIC values may be appropriate. In general, the Butler
and King model (multiple optima, multiple attraction param-
eters, one Brownian rate parameter) may be more appropriate
in the case of a few distinct, rarely moving adaptive peaks
in phenotype space that organisms transition between infre-
guently. Our model (multiple rate parameters) may be more
appropriate in cases in which the adaptive peaks move across
phenotype space as a result of several factors or even under
a model of punctuated phenotypic change with many jumps.

[Notethat, after acceptance of this manuscript, wereceived
notice of an in press paper by Thomas et al. 2006 which uses
a method substantially similar to the noncensored method
with likelihood ratio tests described above.]

Extensions

The approaches described here may be extended in several
ways. Currently, the methods allow rate parameters to be
assigned to monophyletic and paraphyletic subtrees (cen-
sored and noncensored approaches) or to individualy se-
lected branches (noncensored approach) and then suitability
of the model evaluated. All these methods currently require
assignment of just one rate per branch. There are several
guestions, however, that would be better addressed by allow-
ing different portions of a branch to be assigned to different
rate parameters. One may want to assign rates to intervals of
time rather than to parts of atree. A typical question might
be whether placental mammals had a higher rate of morpho-
logical evolution in the Eocene, as they expanded into niches
previously occupied by nonavian dinosaurs, than later, once
many of those niches were filled. This branch subdivision
may be even finer. If the hypothesis is that one particular
discrete trait affects the rate of evolution of some continuous
trait (for example, whether the evolution of animal-dispersed
seeds affects the rate of evolution of plant height), one could
use an approach such as Nielsen (2002) to stochastically map
the discrete character on the tree and then test to see whether
the portions of the tree with one state for the discrete character
have adifferent rate of evolution for the continuous character
than portions of the tree to which the other discrete state has
been mapped. Another extension, currently in development,
would be to try to examine whether the rate of evolution of
a continuous character is correlated with the state of a dif-
ferent continuous character, rather than a discrete character.
Rates of more than one character could also be examined.
Huelsenbeck and Rannala (2003), for example, use the
Brownian motion model for multiple characters (their egs. 5
and 6) to examine character correlation. Lynch (1991) also
develops this model, including error terms. In much the same
way that the one character model was modified in this paper
to test for differences in rate, the multiple character model
could be modified to see whether rates or correlations
changed as expected under some hypothesis (e.g., whether
the correlation between body mass and brain sizein mammals
is also a function of whether or not the organisms live in
complex socia groups).

Like many models in comparative biology, the approaches
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above assume that trait values are known without error. The
methods may be modified in at least two ways to deal with
error. If measurement variance is known for each of the ter-
minal taxa, the actual variance-covariance matrix will be the
sum of a diagonal matrix containing these variances and the
evolutionary variance-covariance matrix (created by multi-
plying covariances based on tree branch lengths by the rel-
evant rate parameter(s), as above). The likeliest values of the
rate parameters and the likelihood of the model may then be
numerically estimated. If these measurement variances are
not known, the measurement error diagonal matrix could be
created to have diagonal entries of o3, which would then be
estimated as part of the model. Estimating a different mea-
surement error for each taxon using just one character per
taxon would add too many parameters to the model to be
practical. With either approach, problems such as Poncirus
and Citrus having different states but zero branch length be-
tween them would no longer confound the model. Lynch
(1991) also discusses how to deal with error under the Brown-
ian motion model of character evolution.

In paleontology recovering well-supported trees can be dif-
ficult. Although the methods here can incorporate uncertainty
in the tree by performing analyses across sets of weighted
trees, there may be situations in which ancestor-descendant
relationships or other fragments of the tree are all that can
be estimated. Although power will be lost, it is still possible
to perform phylogenetically correct rate comparisonsin such
cases. For example, if just ancestor-descendant pairs are
known, the variance-covariance matrix would be a diagonal
matrix for the descendants, with diagonal entries correspond-
ing to the length of time separating the ancestor and de-
scendant in each pair and the vector of expected states being
the vector of states of the ancestors. Note, however, that if
any of the supposed ancestors are not direct ancestors but
rather share a most recent common ancestor with the sup-
posed descendent further back in time, rate estimates will be
biased upwards (the phenotypic change occurred over more
time than is assumed). Fragments of the tree may be treated
in a similar manner.

There may be interest in using the approaches here in an
exploratory manner rather than in a hypothesis-testing or
model -sel ection manner. This should be done cautiously. For
a fully resolved tree with N taxa, there are 2N-2 branches,
thus there is insufficient information for estimating rates on
each branch using one character (about twice as many pa-
rameters as data points). Even allowing different rates for
each pair of branches, as is done by using standardized con-
trasts, results in N-1 parameters (including the state at the
root) being estimated for N data points, and so, at best, these
are very uncertain estimates. Other approaches might be to
split the tree at an internal branch and test for different rates
in the two resulting subtrees using the censored test, repeating
this for all branches. This might be useful for suggesting key
branches on which rate changes may occur. As the tests on
different branches have different expected power and are not
independent, simply comparing results may be inappropriate,
although parametric simulation may be useful.

ProGrRAM NOTE

The new tests and simulations discussed above, except for
the noncensored approach (implemented in r8s version 1.70,
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http://ginger.ucdavis.edu/r8gindex.html), have been imple-
mented in a set of Matlab functions, collectively called Brownie
1.0. They are available from http://www.brianomeara.info/
brownie. They will run under Matlab 5.2 or later and require
the Stats package. Brownie 2.0, a stand-alone Macintosh, Win-
dows, and Linux application that reads Nexus files (including
trees) and can perform rate tests, is also available at this site.

ACKNOWLEDGMENTS

We would like to thank fellow members of the Spring 2003
University of California Davis phylogenetics discussion
group for discussion that stimulated this paper. R. Carlson
and D. Collar provided useful feedback on the method im-
plementation; D. Collar, C. Nunn, M. Turelli, P. Ward, A.
Wild, and two anonymous reviewers made constructive sug-
gestions about the manuscript. Editor T. Hansen has made
several useful suggestions which have greatly improved the
methods developed here. BCO was supported by a UC Davis
Center for Population Biology fellowship and a National Sci-
ence Foundation Graduate Research Fellowship.

LiTERATURE CITED

Akaike, H. 1973. Information theory as an extension of the max-
imum likelihood principle. in B. N. Petrov and F. Csaki, eds.
Second International Symposium on Information Theory. Aka-
demiai Kiado, Budapest, Hungary.

Bennett, M. D., and I. J. Leitch. 2005. Plant DNA C-values Da-
tabase. Rel 4.0 (October). http://www.rbgkew.org.uk/cval/
Blomberg, S. P., T. G. Garland, Jr.,and A. R. Ives. 2003. Testing
for phylogenetic signal in comparative data: behavioral traitsare

more labile. Evolution 57:717-745.

Burnham, K. P., and D. R. Anderson. 2002. Model selection and
multimodel inference: a practical information theoretic ap-
proach, 2d ed. Springer-Verlag, New York.

Butler, M. A. and A. A. King. 2004. Phylogenetic comparative
analysis: a modeling approach for adaptive evolution. Am. Nat.
164:683-695.

Casella, G., and R. L. Berger. 2002. Statistical inference, 2d ed.
Duxbury, Pacific Grove, CA.

Chubb, A. L. 2004. New nuclear evidence for the oldest divergence
among neognath birds: the phylogenetic utility of ZENK(i). Mol.
Phyl. Evol. 30:140-151.

Felsenstein, J. 1985. Phylogenies and the comparative method. Am.
Nat. 125:1-15.

———. 2003. PHY LIP (phylogeny inference package). Vers. 3.5c.
Distributed by the author. Department of Genome Sciences, Uni-
versity of Washington, Seattle, WA.

Fjeldsd, J. 1983. Ecological character displacement and character
release in grebes Podicipedidae. Ibis 125:463-481.

Foote, M. 1993. Discordance and concordance between morpho-
logical and taxonomic diversity. Paleobiology 19:185-204.
———.1994. Morphological disparity in Ordovician-Devonian cri-
noids and the early saturation of morphological space. Paleo-

biology 20:320-344.

———.1995. Morphological diversification of Paleozoic crinoids.
Paleobiology 21:273-299.

———.1996. ‘*Models of Morphological Diversification.”” Pp. 62—
86in J. Jablonski, D. H. Erwin, and J. H. Lipps, eds. Evolutionary
paleobiology, Univ. of Chicago Press, Chicago, IL.

———. 1997. The evolution of morphological diversity. Annu.
Rev. Ecol. Syst. 28:129-152.

Garland, T. G., Jr., 1992. Rate tests for phenotypic evolution using
phylogenetically independent contrasts. Am. Nat. 140:509-519.

Garland, T. G., Jr.,and A. R. lves. 2000. Using the past to predict
the present: confidence intervals for regression equationsin phy-
logenetic comparative methods. Am. Nat. 155:346—-364.

Gatesy, S. M., and K. M. Middleton. 1997. Bipedalism, flight, and

BRIAN C. OMEARA ET AL.

the evolution of theropod locomotor diversity. J. Verte. Paleon-
tol. 17:308-329.

Hansen, T. F. 1997. Stabilizing selection and the comparative anal -
ysis of adaptation. Evolution 51:1341-1351.

Hansen, T. F., and E. P. Martins. 1996. Translating between mi-
croevolutionary processes and macroevolutionary patterns: The
correlation structure of interspecific data. Evolution 50:
1404-1417.

Harvey, P. H., R. M. May, and S. Nee. 1994. Phylogenies without
fossils. Evolution 48:523-529.

Hey, J. 1992. Using phylogenetic trees to study speciation and
extinction. Evolution 46:627-640.

Huelsenbeck, J. P., and B. Rannala. 2003. Detecting correlation
between charactersin acomparative analysiswith uncertain phy-
logeny. Evolution 57:1237-1247.

Knight, C. A., N. A. Molinari, and D. A. Petrov. 2005. The large
genome constraint hypothesis: evolution, ecology, and pheno-
type. Ann. Bot. 95:177-190.

Lande, R. 1976. Natural selection and random genetic drift in phe-
notypic evolution. Evolution 30:314-334.

———. 1979. Quantitative genetic analysis of multivariate evo-
lution, applied to brain:body size allometry. Evolution 33:
402-416.

Leitch, I. J., D. E. Soltis, P. S. Soltis, and M. D. Bennett. 2005.
Evolution of DNA amounts across land plants (Embryophyta).
Ann. Bot. 95:207-217.

Lynch, M. 1990. The rate of morphological evolution in mammals
from the standpoint of the neutral expectation. Am. Nat. 136:
727-741.

———. 1991. Methods for the analysis of comparative data in
evolutionary biology. Evolution 45:1065-1080.

Magallon, S. A., and M. J. Sanderson. 2005. Angiosperm divergence
times: the effect of genes, codon positions, and time constraints.
Evolution 59:1653-1670.

Martins, E. P. 1994. Estimating the rate of phenotypic evolution
from comparative data. Am. Nat. 144:193-209.

Martins, E. P., and T. F. Hansen. 1997. Phylogenies and the com-
parative method: a general approach to incorporating phyloge-
netic information into the analysis of interspecific data. Am. Nat.
149:646-667.

Mayr, G. 2004. Morphological evidence for sister group relationship
between flamingos (Aves: Phoenicopteridae) and grebes (Pod-
icipedidae). Zool. J. Linn. Soc. 140:157-169.

Nee, S., A. @. Mooers, and P. H. Harvey. 1992. Tempo and mode
of evolution revealed from molecular phylogenies. Proc. Natl.
Acad. Sci. USA 89:8322-8326.

Nielsen, R. 2002. Mapping mutations on phylogenies. Syst. Biol.
51:729-739.

Pagel, M. 1994. Detecting correlated evolution on phylogenies: a
general method for the comparative analysis of discrete char-
acters. Proc. R. Soc., Lond. B 255:37—45.

———. 1998. Inferring evolutionary processes from phylogenies.
Zool. Scr. 26:331-348.

——— 1999. Inferring the historical patterns of biological evolu-
tion. Nature 401:877-884.

Purvis, A. 2004. How do characters evolve? Nature 432.

Rice, P., . Longden, and A. Bleasby. 2000. EMBOSS: the European
molecular biology open software suite. Trends Genet. 16:
276-277.

Ricklefs, R. 2004. How do characters evolve? [response] Nature
432.

Sanderson, M. J. 1997. A nonparametric approach to estimating
divergence times in the absence of rate constancy. Mol. Biol.
Evol. 14:1218-1231.

———. 2002. Estimating absolute rates of molecular evolution and
divergence times: a penalized likelihood approach. Mol. Biol.
Evol. 19:101-109.

Schluter, D., T. Price, A. @. Mooers, and D. Ludwig. 1997. Like-
lihood of ancestor states in adaptive radiation. Evolution 51:
1699-1711.

Slowinski, J. B., and C. Guyer. 1989. Testing the stochasticity of
patterns of organismal diversity: An improved null model. Am.
Nat. 134:907-921.



TESTING EVOLUTIONARY RATES

Soltis, D. E., P. S. Soltis, M. W. Chase, M. E. Mort, D. C. Albach,
M. Zanis, V. Savolainen, W. H. Hahn, S. B. Hoot, M. F. Fay,
M. Axtell, S. M. Swensen, L. M. Prince, W. J. Kress, K. C.
Nixon, and J. S. Farris. 2000. Angiosperm phylogeny inferred
from 18S rDNA, rbcl, and atpB sequences. Bot. J. Linn. Soc.
133:381-461.

Soltis, D. E., P. S. Soltis, M. D. Bennett, and |. J. Leitch. 2003.
Evolution of genome size in the angiosperms. Am. J. Bot. 90:
1596-1603.

Sugiura, N. 1978. Further analysis of the data by Akaike's infor-
mation criterion and the finite corrections. Comm. Stat. Theory
Methods. A7:13-26.

Swofford, D. L. 2003. PAUP*: phylogenetic analysis using parsi-
mony (*and other methods). Ver. 4.0b10. Sinauer Associates,
Sunderland, MA.

Thomas, G. H., R. P. Freckleton, and T. Székely. 2006. Comparative
analysis of the influence of developmental mode on phenotypic
diversification rates in shorebirds. Proc. R. Soc. Lond. B. In press.

Turelli, M., J. H. Gillespie, and R. Lande. 1988. Rate tests for
selection on quantitative characters during macroevolution and
microevolution. Evolution 42:1085-1089.

Van Tuinen, M., D. B. Butvill, J. A. W. Kirsch, and S. B. Hedges.
2001. Convergence and divergence in the evolution of aquatic
birds. Proc. R. Soc. Lond. B. 268:1345-1350.

Wesley-Hunt, G. D. 2005. The morphological diversification of
carnivores in North America. Paleobiology 31:35-55.

Zelditch, M. L., D. L. Swiderski, H. D. Sheets, and W. L. Fink.
2004. Geometric morphometrics for biologists: a primer. Elsev-
ier Academic Press, San Diego, CA.

Zonneveld, B. J. M., |. J. Leitch, and M. D. Bennett. 2005. First
nuclear DNA amounts in more than 300 angiosperms. Ann. Bot.
96:229-244.

Corresponding Editor: T. Hansen

APPENDIX

Equation 1 is derived as follows. V is the variance-covariance
matrix for the states of the terminal taxa; all other notation is as
described in the text. By definition,
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V = E(XX) (A1)
if X istransformed so that the mean is zero.
2 4+ ...+ X2 _
var(X) = w - X2 (A2)
= X+ oo+ Xy
X = N (A3)
1 g
=3¢ bEig (A4
XnO
1 ’ — 1 ’
= QX =Xt (A5)
since X2 = X x X, we get:
= 1 1 1
2 — Z(1 X = ’ - — 1 ’
X2 = X)X SX'D) = 51 (XX)1 (A6)
24+ -+ X% =
E[var(X)] = E(ixl N XN) - E(X?) (A7)
H+ -+
_ [ECD) N EOR )] 1 (XX (A8)

Thefirst term isjust the mean of the sum of the dlagonal elements
of V (variances), so

—tr(V) - i1'E(xx')1

E[var(X)] = (A9)
substituting A1 back in A9, we get
E[var(X)] = —tr(V) - i1 'V1 (A10)

which is the expected disparity under any model of character
evolution for which a variance-covariance matrix may be written.
In the case of Brownian motion, the variance-covariance matrix V
is equal to o2C, thus resulting in equation 1.



