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Despite considerable skepticism, researchers have found that
the patterns of muscle activation that control feeding behaviors
of lower vertebrates have been surprisingly conserved during
evolution. This tendency for conservation among taxa appears
in the face of marked flexibility of motor patterns within
individuals. One interpretation of these apparently conflicting
trends is that the most effective motor pattern for any given
feeding situation is the same across substantial phylogenetic
distances and morphological differences. The novel
evolutionary insight provided by this research is that historical
changes to motor patterns are a relatively infrequent source of
trophic innovation. The spectacular diversity of feeding abilities
and feeding ecology in lower vertebrates is based mostly on
axes of variation, and on the innovations in the organization of
muscles and the skeletal linkage systems that they drive. 
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Abbreviations
emg electromyograph
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Introduction
Vertebrate trophic biology is characterized by staggering
diversity. The waterways of the world are filled with fish
that feed on nearly every conceivable food source, and
tetrapods show an almost equal range of dietary specialization.
It is apparent that this diversity is associated with variation
in musculo-skeletal morphology and in the mechanical
properties of feeding systems; but how have changes in 
the motor patterns (MPs) that drive feeding behaviors 
contributed to this diversity?

Vertebrate feeding systems are complex networks of 
muscles and skeletal elements. Teleost fishes are especially
complex, having more than 30 moving bones and 50 muscles
in the head [1]. Feeding behaviors can be thought of as
emergent phenomena that are formed by the integration of
several factors including: the sequence and intensity of
muscular contractions, the structural organization of the
musculo-skeletal system, and the contractile properties 
of the muscles driving the system [2–4]. It would appear
that modifications to the MP — that is changes in the
sequences and timing of muscular contraction or more 
subtle changes in the proportion of motor units
recruited — represent a fertile ground for evolutionary
innovation in feeding systems [5–9]. In this review I 

summarize recent literature on the role of MP changes in
the evolution of vertebrate feeding systems. My aim is to
emphasize the most common patterns seen in this body of
research and to illuminate the persistent challenges that remain.

Motor flexibility provides versatility
The effects of a variety of factors on MPs have been 
investigated experimentally. The results reveal that most
vertebrate species show an extensive capacity to modulate
MPs in response to prey type [10–12,13••,14], prey posi-
tion [15,16], predator satiation [17], prey toughness [18,19],
and prey size [20]. This motor flexibility applies across all
of the major vertebrate clades that have been studied. The
picture that emerges is that vertebrates can integrate feed-
back from visual, tactile, olfactory, gustatory, vomeronasal
and other sensory modalities into the motor control of
feeding behaviors [15,21–24]. Vertebrates adjust the motor
control of their feeding system to match the demands that
are presented by different prey and different conditions.
This motor flexibility has been repeatedly identified as 
a major factor in promoting the versatility of vertebrate 
feeding behaviors [8,12,25–28].

The implication of high variability in quantified character-
istics of MPs, and the control that vertebrates show in
response to a variety of stimuli, indicates that the neural
control of feeding behaviors has an extensive capacity for
flexibility [13••,26]. Intrinsic constraints on alterations in
MPs have therefore not been identified.

Motor patterns are conserved
In the face of an almost universal capacity for modulation
of MPs, there is a remarkably strong tendency for closely
related species to show little or no difference in the MPs
that they exhibit when feeding on the same prey under the
same conditions [29–31]. Thus, only one of 11 variables
characterizing the MP used by suction feeding sunfishes
differed among species feeding on the same prey [10].
This is in spite of the fact that the species studied differed
ecologically, from piscivores to planktivores, and had large
differences in the size and shape of mouth parts and the
linkage mechanics of the jaws [32]. Triggerfishes, filefishes
and pufferfishes, which feed by directly biting their prey,
exhibit indistinguishable MPs when feeding on a common
prey ([33]; Figure 1). A common MP of the hyolingual
muscles has been found to characterize prey capture 
in major lizard groups [7,34•]. Similarly, mammals from 
different Orders exhibit a common MP that is associated
with chewing [28,35,36].

The pattern is striking. Species that differ in feeding 
ecology, feeding abilities and feeding kinematics often
drive their feeding behavior with muscle activity patterns
that differ only slightly or are indistinguishable from each
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other ([32,37,38]; Figure 2). The pattern is so common in
closely related groups of species that, to date, very little of
the variation among species in feeding performance can be
attributed to evolutionary modifications to the MPs that
drive the behaviors. In contrast, species vary markedly in
the mechanics of their jaw linkage systems and the 
contractile and metabolic properties of their muscles.
Changes at these levels of design appear to account for
most of the variation among closely related species in 
feeding ability [39,40].

Why are motor patterns conserved?
How are we to reconcile the apparent paradox produced by
the extensive flexibility in the motor control of vertebrate
feeding behaviors and the lack of inter-specific differences
in the MPs for a common behavior when feeding under
similar conditions? Clearly, the conservation of feeding
MPs among close relatives does not reflect constraints on
the ability of the nervous system to change its output. One
explanation for these different patterns of variation is the
tendency for conservation across species to reflect a com-
mon solution that is the most effective MP for the task.
Thus, it may be that although vertebrates can modify feeding
MPs in response to several stimuli, when executing the
same behavior under the same conditions the most effective
MP remains nearly constant across closely related species.
This interpretation is strongly supported by the extensive
flexibility in motor output seen among vertebrates. If 
vertebrates are invariably able to modulate their MP in
response to environmental factors, this would imply that
sensory feedback is being used to fine-tune the MP. We
can therefore assume that most species of vertebrate have
a wide range of MPs. Different species utilize indistin-
guishable patterns under similar conditions, implying
active convergence on a common choice of MP. In the
future, one approach to testing this hypothesis would be to

establish the performance consequences of MP variation
within species, and to ask whether each species tends to
use the optimal pattern from the repertoire that it possesses.

The flexibility in MPs across species argues strongly
against the possibility that the conservation of MPs among
closely related species is attributable to constraints on
neural output [41,42]. Mammalian MPs for chewing are
thought to be driven by relatively simple central pattern
generators that can be modified by peripheral feedback
[42]. However, the presence of a central pattern generator,
although giving an anatomical basis for homologous behaviors
in different species, does not argue for narrow constraints
on the specific form that the MP can take.

Challenges to the conservation paradigm
Several points have been raised that challenge the conclusion
that feeding MPs tend to be strongly conserved in 
vertebrate evolution.

Limited behavioral and taxon sampling 
The first objection is that only a few behaviors have been
studied well enough to permit general statements about
interspecific patterns [30••]. In fact, the conservation of
MPs has been reported in several behaviors and several
major vertebrate groups. These reports describe conserved
MPs in teleost fishes for suction feeding [10], biting
behaviors [12,30••], pharyngeal jaw chewing behaviors
[43], and pharyngeal jaw crushing behavior [44•]. MPs
have been conserved for suction feeding in amphibians
[31], and for prey prehension and prey transport in lizards
[34•]. In mammals, suckling and chewing have also 
provided evidence of conserved patterns [28]. Whereas
there are clearly groups and behaviors that have not yet
been evaluated, enough research has been conducted to
permit general conclusions to be drawn.
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Figure 1

Bar diagrams showing the average timing of
activity of five cranial muscles in three species
of tetraodontiform fish during biting behavior
while feeding on pieces of squid. A nested
analysis of variance found no differences
among species in mean burst duration or
onset of movement time. This conserved
pattern exists in the face of marked
morphological and ecological differences
among these taxa, and despite the passing of
about 50 million years since the time of their
last common ancestor. Muscle abbreviations:
AAP, adductor arcus palatini; AM2, section 2
of the adductor mandibulae; LAP, levator
arcus palatini; LOP, levator operculi; SH,
sternohyoideus. Values represent mean and
standard error (SE) across five individuals of
each species. Data taken from [12].
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Consequences of small changes in motor patterns
An important point is that small changes in the MP may
have large functional consequences. An analogy can be
made to recent analyses of morphological systems in the
skull that have shown that the mechanical properties of
skeletal linkages do not map linearly onto morphological
variation [45,46]. Loeb and Gans [47] conclude that it is
possible to only make limited connections between elec-
tromyographic (emg) variation and the mechanics of the
associated muscle contraction. Future tests of this hypothesis
will require a combination of emg recordings with details
of muscle strain and skeletal kinematics. This would 
permit mapping of the variation in MPs onto variation in
the mechanical output of the muscle and the motion of the
feeding structures. It is possible that the conserved nature
of MPs reflects, in part, the crude relationship between
emg data and the mechanical output of muscles. Indirect
support for this point comes from the observation that the
MPs associated with different behaviors may be similar.
The biting and suction-feeding behaviors of teleost fish
involve surprisingly similar MP patterns, in spite of their
obvious differences [30••,48,49].

Motor pattern innovation
There are many examples of innovations in MPs being
associated with changes in trophic biology [6,26,50,51,52••,53].
However, this does not negate the fact that when comparisons
are made among closely related species, or even across
broad phylogenetic stretches, relatively little of the variation
in trophic biology can be attributed to changes in MPs. MP
innovations appear periodically within vertebrate evolution.
In some cases major trophic shifts can be partly attributed
to changes in muscle activation patterns. For example,
crushing of mollusks by centrarchid sunfishes involves a
novel pattern of muscle activation that is found only in the
mollusk-eating taxa [40,51]. Up to four distinct innovations
in chewing MPs are known across different Orders of 
mammals [28]. Thus, distinct MP innovations have periodically
allowed vertebrate groups to invade novel feeding niches.
These innovations are frequently substantial enough that
they define previously unknown behaviors.

Conclusions
A central goal in evolutionary neurobiology is to under-
stand the role of nervous system outputs in generating the
diversity of behaviors and ecotypes that are seen in nature.
With respect to the evolutionary history of vertebrate feed-
ing systems, innovations in MPs have occurred periodically
and can play a key role in facilitating the invasion of novel
trophic niches. However, the surprising general pattern is
that trophic diversity does not usually have a basis in MP
variation. Vertebrate feeding MPs are characterized by
being readily modified in response to a variety of feedback
systems. When feeding under similar conditions, however,
different species typically exhibit muscle-activation patterns
that are indistinguishable, or have only minor differences.
The capacity for fine-tuning MPs, together with their 
conserved nature, suggests that the uniformity of MPs is

brought about by an active convergence. This implies that
the most appropriate MP for the job is largely the same
among taxa, in spite of the variation in morphology and
muscle physiology seen among even close relatives.
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Figure 2

Images taken from high-speed videos of prey capture in two teleost
fishes. Remarkably, the jaw mechanics and prey capture kinematics
have diverged radically in these fish, whereas the MPs driving these
behaviors show only minor differences [38]. The top two images
show the largemouth bass, Micropterus salmoides (Centrarchidae),
a freshwater teleost from North America. The bottom sequence
shows the sling-jaw wrasse, Epibulus insidiator (Labridae), an
inhabitant of Indo-Pacific coral reefs. Both species feed
predominantly on other fishes.
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