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The widely accepted phylogenetic position of Chondrichthyes as the sister group to all other
living gnathostomes makes biomechanical analyses of this group of special significance for
estimates of skull function in early jawed vertebrates. We review key findings of recent
experimental research on the feeding mechanisms of living elasmobranchs with respect to
our understanding of jaw depression mechanisms in gnathostome vertebrates. We introduce
the possibility that the ancestral jaw depression mechanism in gnathostomes was mediated
by the coracomandibularis muscle and that for hyoid depression by the coracohyoideus
muscle, as in modern Chondrichthyes and possibly placoderms. This mechanism of jaw
depression appears to have been replaced by the sternohyoideus (homologous to the
coracohyoideus) coupling in Osteichthyes following the split of this lineage from Chon-
drichthyes. Concurrent with the replacement of the branchiomandibularis (homologous to
the coracomandibularis) coupling by the sternohyoideus coupling as the dominant mechanism
of jaw depression in Osteichthyes was the fusion and shift in attachment of the interhyoideus
and intermandibularis muscles (producing the protractor hyoideus muscle, mistakenly refereed
to as the geniohyoideus), which resulted in a more diversified role of the sternohyoideus
coupling in Osteichthyes. The coracohyoideus coupling appears to have been already present
in vertebrates where it functioned in hyoid depression, as in modern Chondrichthyes, before
it acquired the additional role of jaw depression in Osteichthyes.
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INTRODUCTION

The vertebrate jaw has proven to be a model subject of research on the evolution
of functional systems. This complex system of muscles and skeletal elements that
serves as a crucial interface between vertebrates and their environment has provided
the material for several major concepts and repeating themes in the evolution of
organismal design (Gans, 1961; Shaeffer & Rosen, 1961; Osse, 1969; Crompton &
Parker, 1978; Barel, 1983; Lauder & Liem, 1983, 1989; Bramble & Wake, 1985;
Frazzetta, 1986; Aerts et al., 1987; Lauder et al., 1989; Aerts, 1991). However, our
understanding of the evolution of vertebrate jaws has been limited because functional
morphological research on the sister group to all other living gnathostomes, the
Chondrichthyes, has lagged behind work on other major clades. Because of the
phylogenetic position of Chondrichthyes, establishing details of jaw mechanics in
this group is vital to our understanding of the feeding mechanism in the earliest
jawed chordates. In this paper we discuss some implications of recent research on
the functional morphology of feeding in elasmobranchs (Haller, 1926; Moss, 1972;
Motta, Hueter & Tricas, 1991; Frazzetta, 1994; Motta & Wilga, 1995; Motta et al.,
1997; Wilga, 1997; Wilga & Motta, 1998a,b, 2000) for our understanding of
gnathostome jaw evolution.

We focus on the history of mouth opening mechanisms and particularly the
systems of muscles and skeletal elements that are involved in depression of the lower
jaw. One of the general conclusions from comparative studies of aquatic feeding
mechanisms in bony fishes and salamanders is that the major biomechanical couplings
involved in mouth opening have been largely retained throughout the radiation of
these vertebrate groups (Reilly & Lauder, 1990; Lauder & Shaffer, 1993). The
primary mechanism mediating lower jaw depression in all groups of living fishes and
salamanders that have been studied to date, with the exception of Chondrichthyes, is
a linkage involving a ligamentous connection between the hyoid bar and mandible
that transmits posterior rotation to the mandible (Lauder, 1980a; Lauder & Shaffer,
1985; Bemis & Lauder, 1986; Bemis, 1987). Recent research on chondrichthyans
has revealed that this linkage is not a viable mechanism of jaw depression in this
group (Ribbink, 1971; Moss, 1972; Motta et al., 1991, 1997; Motta & Wilga, 1995;
Wilga, 1997; Wilga & Motta, 1998a,b, 2000). Our primary purpose in this paper
is to review this observation and discuss its implications for our understanding of
early vertebrate feeding systems in the light of current estimates of vertebrate
interrelationships. We introduce and explore the possibility that the ancestral jaw



EVOLUTION OF JAW MECHANICS IN VERTEBRATES 167

Heterodontiformes

Orectolobiformes
—I_E Lamniformes
Carcharhiniformes1

Chlamydoselachiformes

Galea

Hexanchiformes

Squalea

Echinorhiniformes
Dalatiiformes
Centrophoriformes
Squaliformes z
Squatiniformes
Pristiophoriformes
Pristiformes

Rhynchobatoidei
Rhinobatoidei®

Batoidea

Torpedinoidea
Rajoidea

Myliobatoidea

Figure 1. Elasmobranch phylogeny (after Shirai, 1996) showing taxa investigated functionally. 1,
Negaprion brevirostris, Sphyrna tiburoy 2, Squalus acanthias; 3, Rhinobatos lentiginosus.

depression mechanism in gnathostomes was mediated by the coracomandibularis
muscle and that of hyoid depression by the coracohyoideus as seen in modern
Chondrichthyes.

METHODS

The morphology and function of the muscles involved in the coracomandibularis
and coracohyoideus couplings in lower vertebrates was compiled from the literature.
Muscle synonymies are from Edgeworth (1935), Winterbottom (1974), and Miyake,
McEachran & Hall (1992). We reserve the chondrichthyan terms ‘coraco-
mandibularis’ and ‘coracohyoideus’ couplings as general term for those couplings
commonly referred to as the ‘geniohyoideus’ and ‘rectus cervicis’. In this paper, we
use the term ‘hyoid’ to refer to the ventral elements of the hyoid arch, which
usually consist of the ceratohyal and the basihyal in most groups, but includes the
hyomandibula in chondrichthyans. Schematic diagrams of musculoskeletal couplings
in elasmobranchs were produced from anatomical dissections of at least five fresh-
frozen specimens each of four species of elasmobranchs: the lemon shark Negaprion
brevirostris (63-229 cm 'TL); the bonnethead shark Sphyma tiburo (56-82 cm TL), the
spiny dogfish Squalus acanthias (4665 cm TL), and the Atlantic guitarfish Rhmnobatos
lentiginosus (52—63 cm TL) (Motta & Wilga, 1995; Motta et al., 1997; Wilga, 1997,
Wilga & Motta, 1998a,b, in review). These species represent each of the three major
elasmobranch radiations (Fig. 1).
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Computer axial tomography scans and photographs of intact heads approximating
the location of the jaws in the resting position ( jaws closed) and with the jaws and
hyoid maximally depressed were used to measure the angle of the hyoid relative to
the lower jaw (for more detail see Motta & Wilga, 1995). Hyoid rotation in degrees
was calculated as the difference between the resting position and its position at peak
lower jaw depression in one fresh-frozen specimen each of N. brevirostris (102 cm
TL), Squalus acanthias (70 cm TL), and Sphyrna tiburo (84 cm TL). This angle was
measured at the intersection of lines drawn along the dorsal edge of the teeth on
the lower jaw and the dorsal edge of the ceratohyal.

Motor activity and kinematics of head movements during feeding in N. brevirostris
(5 individuals, 36 capture trials), Sphyrna tiburo (3 individuals, 12 capture trials),
Squalus acanthias (8 individuals, 44 capture trials), and R. lentiginosus (5 individuals, 42
capture trials) were studied using simultaneous electromyography and high-speed
video (for more detail see: Motta et al., 1997; Wilga, 1997; Wilga & Motta, 1998a,
b, in review). Lateral and ventral video recordings were made during feeding
experiments using a NAC 200 high-speed video camera at 200 fields per second.
Bipolar electrodes were implanted in select cranial muscles using 26 gauge hypo-
dermic needles. Fish were anaesthetized for surgery using 0.065 g/l of tricaine
methanesulfonate (MS 222) and maintained on this solution during surgery. After
surgery, fish were returned to the experimental tank to recover. Feeding trials were
begun after normal swimming behavior was observed for at least one hour post-
recovery and continued until the fish was satiated. Prey items found naturally in
the diet were offered as follows: Atlantic thread herring (Opisthonema oglinum) and
crevalle jack (Caranx hippo) for N. brevirostris; Pacific herring (Clupea pallasi) for Squalus
acanthias; speckled crab (Arenaeus cribrarius), pink shrimp (Penaeus duorarum) and Atlantic
thread herring (Opisthonema oglium) for Sphyma tiburo; pink shrimp (Panaeus duorarum)
for R. lentiginosus. Electrode wires were attached to differential amplifiers set at a
gain of 1000, bandpass 100-3000 Hz with a 60 Hz notch filter. Signals were
simultaneously monitored on a four-channel oscilloscope and an eight-channel
thermal array recorder and recorded on a pulse code modulator that multiplexed
the signals to a videocassette recorder. The EMG and video recordings were
synchronized using a unit that directed a preprogrammed repeating pulse sim-
ultaneously to one channel of the tape recorder and to LED strobes that were
recorded by the video camera. Chart recordings of electromyographic data from
each muscle were analysed by measuring burst duration and burst onset relative to
the start of lower jaw movement as determined by the pattern of synchronization
pulses on the video images and EMG tracings. At the termination of each experiment,
sharks were euthanized by MS-222 overdose according to Institutional Animal Care
and Use Committee guidelines of the University of Washington, Friday Harbor
Laboratories, the University of South Florida, and Mote Marine Laboratory.
Positions of the electrodes were verified by dissection and body length measured. The
following muscles were recorded from: epaxialis, coracomandibularis, coracohyoideus
(not implanted in Sphyrna tiburo), coracoarcualis (V. brevirostris and Squalus acanthias
only), quadratomandibularis, depressor mandibularis (R. lentiginosus only), cor-
acohyomandibularis (R. lentiginosus only) and depressor hyomandibularis (R. lentiginosus
only). The time of the following kinematic events was determined from the video
recording: onset of lower jaw depression, onset of hyoid depression, peak hyoid
depression, onset of lower jaw elevation, onset of upper jaw protrusion, onset of
upper jaw retraction and complete jaw closure.
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Figure 2. Jaw depression couplings in a teleost (after Lauder, 1985). 1, CM-coupling: hyoid-protractor
hyoideus muscle-lower jaw; 2, CH-coupling: hypaxialis—pectoral girdle—sternohyoideus muscle—
hyoid-MHL-lower jaw; 3, opercular coupling. Shading patterns indicate skeletal elements: light grey,
upper jaw; dark grey, lower jaw; dark grey/black stipples, opercular apparatus; white, suspensorium
(hyomandibula and other elements); light grey/white stipples, hyoid (ceratohyal); dark grey/barred,
mandibulohyoid and interopercular-mandible ligaments. Muscle name abbreviations: AAP, adductor
arcus palatini; AM, adductor mandibularis; DO, dilator operculi; EP, epaxialis; CM, coraco-
mandibularis; HY, hypaxialis; LAP, levator arcus palatini; LO, levator operculi; MHL, mandibulohyoid
ligament; CH, sternohyoideus.

Our comparisons of motor patterns among species are based on major qualitative
differences concerning the synchrony of motor activity with specific kinematic events.
In the jaw depression analysis, lower jaw depression and hyoid depression partially
overlap in time, however the onset and completion of these kinematic events
consistently occurred independently and allow differences in the motor pattern and
the corresponding kinematic event to be detected. Muscle morphology, function
and motor pattern were mapped by hand onto a cladogram of gnathostomes. The
resulting phylogenetic distribution of these traits was used as a basis for inferring
evolutionary sequences of change in these components of the feeding mechanism.

RESULTS

Schematic diagrams of a teleost and a dogfish shark illustrating the lower
jaw depression couplings are shown in Figures 2 and 3 respectively. ‘Coupling
two’ 1is the coracohymdeus coupling (hereafter referred to as the CH-coupling)
and in teleosts is composed of the hypaxialis-pectoral  girdle—
sternohyoideus—hyoid-mandibulohyoid (MH) ligament-mandible linkage (see Fig.
2). In the teleost system, contraction of the sternohyoideus retracts the hyoid,
which rotates the anterior-medial confluence of the left and right hyoid elements
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Figure 3. Jaw depression couplings in the dogfish (from Wilga & Motta, 1998a). 1, CM-coupling:
pectoral girdle—coracomandibularis muscle-lower jaw; 2, CH-coupling: hypaxialis—pectoral girdle—
coracohyoideus—coracoarcualis muscle-hyoid; light grey, upper jaw; dark grey, lower jaw; dark grey/
black stipples, suspensorium (hyomandibula); light grey/white stipples, hyoid (ceratohyal-basihyal);
dark grey/barred, mandibulohyoid ligament. Abbreviations: EP, epaxialis; CM, coracomandibularis;
HY, hypaxialis; LH, levator hyomandibularis; LP, levator palatoquadrati; MHL, mandibulohyoid
ligament; POI, preorbitalis I; QM, quadratomandibularis; CH, coracohyoideus-coracoarcualis complex.

posteroventrally. This causes posterodorsal rotation of the proximal end of the hyoid,
which is transmitted to the posterior end of the mandible through the MH ligament.
As a result, the anterior tip of the mandible rotates posteroventrally around the
quadratomandibular joint to depress the lower jaw. Contraction of the hypaxialis
muscles may fix or retract the pectoral girdle allowing the CH-coupling to work
more effectively (Lauder, 1985).

The CH-coupling in sharks consists of the hypaxialis—pectoral girdle—
coracoarcualis—coracohyoideus—hyoid linkage (see Fig. 3) (Motta et al., 1997; Wilga,
1997; Wilga & Motta, 1998a, 2000). The origin of the coracohyoideus is from the
coracoarcualis and the insertion is onto the hyoid, while the insertion of the
coracoarcualis is onto the coracohyoideus and the origin from the pectoral girdle,
thus they are linked functionally and morphologically as a coracohyoideus complex.
Functional analyses have revealed that in sharks, contraction of the coracohyoideus
complex pulls the anterior-medial end of the hyoid posteroventrally, as in teleosts.
However, unlike the teleost hyoid, the proximal end of the shark hyoid does not
move dorsally with contraction of the rectus cervicis, rather, it rotates anteriorly
and ventrally (Fig. 4). This anteroventral rotation of the proximal hyoid is seen in
the CAT scans, radiographs, and photographs of the head skeleton of sharks with
the mouth closed and with the hyoid maximally depressed (see Fig. 4). Such images
reveal that the distal hyoid is rotated posteroventrally around the mandibular-
ceratohyal articulation through an angle of 55° in N. brevirostris, 60° in Squalus
acanthias, and 70° in Sphyma tiburo (Motta & Wilga, 1995; Wilga & Motta, 1998a,
2000). The hyoid appears to rotate around the articulation to the lower jaw as well
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Figure 4. Lateral view of 3D-CAT scans of a N. brevirostris with the jaws closed (top) and open (bottom)
(from Motta & Wilga, 1995). Grey arrows show direction of movement of skeletal elements to depress
the lower jaw from the closed position and to adduct the jaws from the open position, white asterisks
indicate fixed point on cranium, white dot indicates proximal end of the hyoid.

as, and independently of, the hyomandibular-ceratohyal articulation, thus the MH
ligament does not appear to transmit rotation to the mandible.

The coracomandibularis coupling (CM-coupling) in teleosts, coupling 1 in Figure
2, consists of the hyoid—protractor hyoideus—mandible linkage. Contraction of the
protractor hyoideus may either elevate or protract the hyoid compressing the buccal
cavity or depress the lower jaw if the hyoid is fixed by coupling 2. The CM-coupling
in  elasmobranchs is composed of the hypaxialis—pectoral  girdle—
coracomandibularis—-mandible linkage (coupling 1 in Iig. 3). As the pectoral girdle
in sharks is fixed in position by the hypaxialis, contraction of the coracomandibularis
pulls the anterior tip of the mandible posteroventrally. The coracomandibularis in
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Figure 5. Bar diagrams of motor activity in two galean elasmobranchs, Sphyma tiburo (top) and N.
brevirostris (from Wilga and Motta, 2000; Motta et al., 1997). Black boxes indicate the motor pattern
with left and right error bars showing one standard error of the burst onset and duration times
respectively. White circles indicate time of peak hyoid depression. The first grey region in each row
indicates the expansive phase of mouth opening from the start to maximum lower jaw depression.
The middle grey region indicates the compressive phase of mouth closing from maximum lower jaw
depression and the start of upper jaw protrusion to complete jaw closure and maximum upper jaw
protrusion. The last grey region indicates the recovery phase from jaw closure and maximum upper
jaw protrusion to complete retraction of the upper jaw. Muscle name abbreviations: EP, epaxialis;
CM, coracomandibularis; QM, quadratomandibularis; CH1, coracohyoideus; CH2, coracoarcualis.

elasmobranchs is not linked to the hyoid as it is in Osteichthyes and its line of action
is always below the jaw joint and thus it always acts to depress the lower jaw.

The above interpretations of function in the CM-coupling and the CH-coupling
in sharks are supported by electromyographic data from four species of elasmobranchs
(see Figs 5 and 6). Motor activity in the coracomandibularis always precedes that
of the coracohyoideus and coracoarcualis and always begins prior to the onset of
lower jaw depression. Motor activity in the coracohyoideus and coracoarcualis may
not begin until after the onset of lower jaw depression and may not continue
throughout lower jaw depression. However, motor activity in these muscles begins
just before the start of hyoid depression and ends prior to peak hyoid depression.
In V. brevirostris, peak hyoid depression often occurs after activity in the coracohyoideus
and coracoarcualis muscles have stopped. The extended duration of hyoid depression
is probably due to water influx pushing against the hyoid when the mouth is opened
and the shark is swimming. Note that peak hyoid depression occurs during elevation
of the lower jaw.

DISCUSSION

The mechanisms of jaw action during feeding have now been studied in rep-
resentatives of most of the major living non-amniotic, aquatic vertebrate lineages.
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Figure 6. Bar diagrams of motor activity in a squalean and batoid elasmobranch, Squalus acanthias (top)
and R. lentiginosus (bottom) (from Wilga & Motta, 1998a,b). Black boxes indicate the motor pattern
with left and right error bars showing one standard error of the burst onset and duration times
respectively. Dark grey box indicates a second burst of activity. White circles indicate time of peak
hyoid depression. The first grey region indicates the expansive phase of mouth opening from the start
to maximum lower jaw depression. The middle grey region indicates the compressive phase of mouth
closing from maximum lower jaw depression and the start of upper jaw protrusion to complete jaw
closure and maximum upper jaw protrusion. The last grey region indicates the recovery phase from
jaw closure and maximum upper jaw protrusion to complete retraction of the upper jaw. Muscle
name abbreviations: EP, epaxialis; DM, depressor mandibularis; DH, depressor hyomandibularis; CM,
coracomandibularis; QM, quadratomandibularis; CHI, coracohyoideus; CH2, coracoarcualis; CH3,
novel division coracohyomandibularis. Note the lack of activity in CH1 in R. lentiginosus even though
the muscle was correctly implanted and was active during other behaviours.

This body of research includes experimental work with living specimens of sala-
manders (Lauder & Shaffer, 1985; Reilly & Lauder, 1990), lungfishes (Bemis &
Lauder, 1986), actinopterygians (Lauder, 1979, 1980a), and now chondrichthyans
(Motta, Hueter & Tricas, 1991; Frazzetta, 1994; Motta et al., 1997; Wilga, 1997;
Wilga & Motta, 1998a,b, 2000). Of the major living aquatic gnathostome lineages,
only Latimeria lacks a thorough functional description based on work with living
specimens (Lauder, 1980b). Work with extinct lineages is limited by our inability to
observe jaw kinetics, but detailed morphological studies have been conducted with
placoderms (Heintz, 1932; Edgeworth, 1935; Stensio, 1959; Miles & Westoll, 1968;
Miles, 1969; Denison, 1978) and acanthodians (Miles, 1964; 1968), two basal
gnathostome groups. Below we attempt to summarize observations made on the
mechanisms of jaw depression in lower vertebrates and we attempt to recreate the
evolutionary history of this (Fig. 7).
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1. Coracomandibularis coupling (depressor gnathalis in Placodermi) attaches mandible to the pectoral
girdle and functions to depress the mandible. Coracohyoideus coupling attaches pectoral girdle to
hyoid and functions to depress hyoid. Mandibulohyoid ligament present but does not function in
mandibular depression.

2. Coracomandibularis eoupling (branchiomandibularis in Osteichthyes; geniothoracis in Dipnoi;
geniohyoideus in Amphibia) attaches mandible to hyoid and other branchial arches and functions in
buccal compression, hyoid protraction and limited depression of the mandible. Coracohyoideus
coupling (sternohyoideus in Actinopterygii and Sarcopterygii; rectus cervicis in Dipnoi and Amphibia)
depresses hyoid and mandible via the mandibulohyoid ligament.

3.True coracomandibularis coupling lost, analogous coupling (protractor hyoideus, formed from fusion
of intermandibularis posterior and interhyoideus muscles) attaches mandible to hyoid and functions
primarily to protract hyoid or compress buccal cavity, although it may contribute to mandible
depression.

Figure 7. Lower jaw depression mechanisms mapped onto a gnathostome phylogeny (modified after
Lauder & Liem, 1983; Lauder & Shaffer, 1993). Note that we differ from Lauder and Shaffer (1993)
in the placement of character 2, but our interpretation is consistent with Lauder and Liem (1983).

Anatomical features of jaw depression couplings

The lower jaw depression couplings in aquatic gnathostomes involve the cor-
acomandibularis and coracohyoideus muscles and their derivatives. The muscles
that are believed to be homologous to the coracomandibularis and the coracohyoideus
are known by a variety of names in the different vertebrate clades (Tables 1, 2). In
keeping with our hypotheses that chondrichthyans possess the ancestral mechanisms
and to simplify discussion throughout this paper, when we refer to couplings
that involve these homologous muscles, we will refer to them using the terms
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TasLE 1. A synonymy of the coracomandibularis muscle in lower vertebrates

Taxa Coracomandibularis Function Literature
Placoderms
Dinichthyes* depressor gnathalis depresses lower jaw Heintz (1932)
Coccosteus™® depressor gnathalis depresses lower jaw Miles (1969), Miles &
Westoll (1968)
Arctolepida*® depressor gnathalis depresses lower jaw Stensio (1959)
Brachythoraci* depressor gnathalis depresses lower jaw Stensio (1959)
Chondrichthyans
Holocephalans* coracomandibularis depresses lower jaw Ribbink (1971), Didier
(1995)
Sharks
Negaprion coracomandibularis depresses lower jaw Motta et al. (1991, 1997)
Squalus, Sphyrma coracomandibularis depresses lower jaw Wilga & Motta (1998a,
2000), Wilga (1997)
Batoids
Rhinobatos coracomandibularis depresses lower jaw Wilga & Motta (1998b)
Acanthodians* branchiomandibularis depresses lower jaw and/  Miles (1968)
or compresses buccal
cavity
Actinopterygians
Cladistians
Polypterus branchiomandibularis compresses buccal cavity Lauder (1980a)
Chondrosteans
Actpenser™ branchiomandibularis depresses lower jaw and  Stengel (1962)
compresses buccal cavity
Polyodon™ branchiomandibularis depresses lower jaw and  Danforth (1913)
compresses buccal cavity
Ginglymodians
Lepisosteus absent Lauder (1980a)
Halecomorphs
Amia branchiomandibularis depresses lower jaw and  Lauder (1980a)
compresses buccal cavity
Teleostei absent®*, but uses the protracts hyoid and Osse (1969), Lauder
protractor hyoideus compresses buccal cavity (1979), Liem (1980),
Wainwright e al. (1989),
Wainwright & Lauder
(1986)
Sarcopterygians
Latimeria* coracomandibularis compresses buccal cavity Lauder (1980b), Thomson
(1967, 1970)
coracomandibularis depresses lower jaw Millot & Anthony (1958)
Dipnoans
Lepidosiren geniothoracis depresses lower jaw and  Bemis & Lauder (1986)
compresses buccal cavity
Amphibians
Ambystoma geniohyoideus depresses lower jaw and  Lauder & Shaffer (1985),

compresses buccal cavity

Shaffer & Lauder (1985)

Muscle synonymies from Edgeworth (1935), Winterbottom (1974), and Miyake et al. (1992). * Based on anatomical
studies. ** Note that the muscle commonly called the geniohyoideus in teleosts is actually the protractor hyoideus,
which arises from fusion of the intermandibularis posterior and the interhyoideus muscles and therefore is not
homologous to the geniohyoideus of other lower vertebrate groups; however, we use it in this study because it is
analogous to the geniohyoideus (Edgeworth, 1935; Winterbottom, 1974; Miyake et al., 1992).

coracomandibularis or coracohyoideus coupling as the general term and follow with
the specific muscle by group in parenthesis when it differs from chondrichthyans.
The coracomandibularis originates from the pectoral girdle in chondrichthyans
and Latimeria, from the hyoid or branchial arches in bony fishes (branchio-
mandibularis) (except Latimeria, teleosts and gars), from the hypaxialis muscle in
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TasLE 2. A synonymy of the coracohyoideus muscle in lower vertebrates
Taxa Cloracohyoideus Function Literature
Placoderms* unknown unknown Denison (1978)
Chondrichthyans
Holocephalans® coracohyoideus depresses hyoid Ribbink (1971), Didier
(1995)
Sharks
Negaprion coracohyoideus- depresses hyoid Motta et al. (1991, 1997)
coracoarcualis
Squalus, Sphyma coracohyoideus- depresses hyoid Wilga & Motta (1998a,
coracoarcualis 2000)
Batoids
Rhinobatos coracohyoideus- depresses hyoid Wilga & Motta (1998b)
coracoarcualis
and depresses hyoid and lower
coracohyomandibularis jaw
Acanthodians* sternohyoideus depresses hyoid and lower ~ Miles (1964, 1968)
jaw
Actinopterygians
Cladistians
Polypterus sternohyoideus depresses hyoid and lower ~ Lauder (1980a)
jaw
Chondrosteans
Acipenser* sternohyoideus depresses hyoid and lower  Stengel (1962)
jaw
Polyodon™ sternohyoideus depresses hyoid and lower ~ Danforth (1913)
jaw
Ginglymodians
Lepisosteus sternohyoideus depresses hyoid and lower ~ Lauder (1980a)
Jaw
Halecomorphs
Amia sternohyoideus depresses hyoid and lower ~ Lauder (1980a)
jaw
Teleostei sternohyoideus depresses hyoid and lower ~ Osse (1969), Lauder
jaw (1979), Liem (1980),
Wainwright & Lauder
(1986), Wainwright et al.
(1989)
Sarcopterygians
Latimeria* sternohyoideus depresses hyoid and lower ~ Lauder (1980b)
jaw
sternohyoideus depresses hyoid Millot & Anthony (1958),
Thomson (1967, 1970)
Dipnoans
Lepidosiren rectus cervicis depresses hyoid and lower ~ Bemis & Lauder (1986)
jaw
Amphibians
Ambystoma rectus cervicis depresses hyoid and lower ~ Lauder & Shaffer (1985),

Jaw

Shaffer & Lauder (1985)

Muscle synonymies from Edgeworth (1935), Winterbottom (1974), and Miyake et al. (1992). * Based on anatomical

studies.

lungfish (geniothoracis), and from the rectus cervicis muscle in salamanders
(geniohyoideus) and inserts on both sides of the mandibular symphysis in all taxa
(Marion, 1905; Danforth, 1913; Daniel, 1922; Edgeworth, 1935; Stengel, 1962;
Lauder, 1980a; Lauder & Shaffer, 1985; Shaffer & Lauder, 1985a,b; Miyake et al.,
1992; Motta & Wilga, 1995, 1999; Didier, 1995; Wilga, 1997). The cor-

acomandibularis coupling has been lost in teleosts and gars. It has been inferred,
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from attachment areas on the bones, that a depressor gnathalis muscle originated
from the scapulocoracoid and inserted onto both sides of the mandibular symphysis
in Dinichthyes and Coccosteus as well as other Arctolepida and Brachythoraci placoderms
(Heintz, 1932; Stensio, 1959; Miles, 1969; Miles & Westoll, 1968). According
to Edgeworth (1935), the depressor gnathalis resembles the primordium of the
hypobranchial muscles, and bears a striking resemblance to the coracomandibularis
muscle.

The protractor hyoideus muscle in teleosts is commonly, albeit mistakenly, referred
to as the geniohyoideus muscle, which is involved in the coracomandibularis coupling.
According to Edgeworth (1935) and Winterbottom (1974), the protractor hyoideus
is composed of a fusion of the intermandibularis posterior and the interhyoideus
muscles which resulted in the protractor hyoideus which spans the hyoid and
mandible. The intermandibularis spans the mandible while the closely apposed
interhyoideus spans the hyoid in other fishes. Furthermore, they concluded that any
muscle that is homologous to the geniohyoideus (coracomandibularis coupling) in
other lower vertebrates has been lost in teleosts, as well as gars. However, the
protractor hyoideus muscle is functionally analogous to the coracomandibularis
coupling of other vertebrates and so we use it in our discussion to show the
phylogenetically broad roles of these couplings in jaw mechanics.

The coracohyoideus muscle originates from the pectoral girdle or hypaxialis
muscle and inserts onto the hyoid arch in virtually all extant lower vertebrates:
Chondrichthyes (coracohyoideus complex); Osteichthyes and amphibians (sterno-
hyoideus); dipnoans and amphibians (rectus cervicis) (Marion, 1905; Danforth,
1913; Daniel, 1922; Edgeworth, 1935; Stengel, 1962; Lauder, 1980a; Miyake et
al., 1992). In fact, since osteichthyans lack a sternum, it is morphologically more
accurate that the ‘sternohyoideus’ be called a ‘coracohyoideus’. In the sister
group to all other holocephalans, Callorhynchidae, the coracohyoideus originates
from the aponeurosis overlying the coracomandibularis, while in the more derived
groups, Rhinochimaeridae and Chimaeridae, it originates from the pectoral
girdle; and it inserts onto the basthyal in all groups (Edgeworth, 1935; Ribbink,
1971; Didier, 1995).

Most gnathostomes have a mandibulohyoid ligament that extends between the
proximal region of the hyoid and the proximal region of the mandible. Elasmobranchs
have several ligaments interconnecting the two elements, while holocephalans have
a single ligament (Gegenbaur, 1865; Gadow, 1888; Daniel, 1915; Allis, 1923;
Nobiling, 1977; Motta & Wilga, 1995, 1999; Didier, pers. comm.). Coelacanths,
lungfish, and most actinopterygians have a MHL (Lauder, 1980a,b; Bemis, 1986;
Bemis & Lauder, 1986). While some salamanders lack a MHL, others have a single
MHL or a multi-branched hyomandibular ligament (Lauder & Shaffer, 1985; Findeis
& Bemis, 1990; Elwood & Cundall, 1994). Thus, the presence of a MHL has been
hypothesized to be primitive for the Teleostomi (Lauder, 1980a,b).

Function of the coracohyoideus coupling

Anatomical and experimental evidence on Chondrichthyes supports the role of
the CH-coupling in mediating hyoid depression in aquatic lower vertebrates. In
Osteichthyes, the CH-coupling also functions to depress the lower jaw but this
function has not been found in chondrichthyans (Fig. 7). The CH-coupling depresses
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the hyoid in both Chondrichthyes and Osteichthyes (sternohyoideus), which expands
the buccal cavity and aids in suction feeding and directing food posteriorly. In
sharks, as in other extant aquatic gnathostomes, the proximal end of the hyoid is
connected to the proximal end of the lower jaw by several ligaments, but this linkage
does not appear to effect jaw depression via hyoid retraction (Gadow, 1888; Daniel,
1915; Allis, 1923; Nobiling, 1977; Motta & Wilga, 1995, 1999). Manual manipulation
of the hyoid does not depress the mandible beyond the effect of pushing on the
ventral floor of the buccal cavity and the underlying coracomandibularis muscle. In
video images of feeding sharks, a distinct ventral bulging of the hyoid is observed
to travel posteroventrally from behind the mandibular symphysis shortly after the
start of lower jaw depression (Wu, 1994; Motta et al., 1997; Wilga, 1997; Ferry-
Graham, 1998; Wilga & Motta, 1998a, 2000). As the hyoid is depressed, it rotates
around the hyomandibular-ceratohyal and mandibular-hyomandibular articulations
in N. brevirostris, Squalus acanthias, and Sphyma tiburo through an angle between the
mandible and the hyoid, from 0° to 55-70° at peak hyoid depression. Thus, the
hyoid rotates independently of the lower jaw and the MHL ligaments do not appear
to transmit hyoid rotation to the mandible.

When the mouth is opened in sharks, the proximal end of the hyoid does not
move posterodorsally as in teleosts. Instead this element is rotated anteroventrally,
displacing the entire jaw apparatus anteroventrally relative to the chondrocranium.
Since posterodorsal elevation of the proximal end of the hyoid does not occur it
cannot function to depress the lower jaw in a manner similar to that in bony fishes.
Furthermore, peak hyoid depression occurs during elevation of the lower jaw in
sharks, well after peak lower jaw depression has taken place.

Electromyographic data support this interpretation as activity in the coraco-
hyoideus and coracoarcualis muscles do not begin until 25-43 ms after the onset of
coracomandibularis activity and may not begin until well after the onset of lower
jaw depression in Squalus acanthias and N. brevirostris (Wilga & Motta, 1998a; Motta
et al., 1997). Thus, the CH-coupling is unlikely to mediate lower jaw depression in
elasmobranchs by transmitting movements of the hyoid to the mandible through
the MH ligaments.

The CH-coupling does not mediate lower jaw depression in batoids and does not
appear to do so in holocephalans, although experimental data on the latter group
is lacking. These taxa present unique cases due to the distinctive morphology of
their jaw suspension systems. The hyoid arch has separated in batoids with the
ventral portion of the hyoid arch (ceratohyal) associated with the first branchial arch
and the dorsal portion (hyomandibula) connected to and supporting the jaws
(Gregory, 1904; Maisey, 1980). The coracohyoideus inserts onto the ventral portion
of the hyoid arch, which is not connected to the jaws and therefore precludes it
from mediating lower jaw depression (Wilga & Motta, 1998b). In support of this,
the coracohyoideus (see CH1 in Fig. 6) is not active during lower jaw depression in
R. lentiginosus (Wilga & Motta, 1998b). However, batoids have a novel division of the
coracohyoideus muscle, the coracohyomandibularis that arises from the embryonic
coracohyoideus along with the coracoarcualis and inserts onto the hyomandibula
(Marion, 1905; Miyake et al, 1992). The coracohyomandibularis depresses the
hyomandibula and in doing so also depresses the jaw apparatus, but is not active
until the latter half of lower jaw depression when the mouth has already been
partially opened (Wilga & Motta, 1998b). Experimental evidence suggests that the
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role of the coracohyomandibularis muscle is to expand the orobranchial region for
the production of suction (Wilga & Motta, 1998b).

Holocephalans are the only living gnathostomes to possess a morphologically
complete hyoid arch that is not involved in suspending the jaws from the cranium
and is free from the cranium (Gregory, 1904; Maisey, 1980; Didier, 1995). The
coracohyoideus in holocephalans also appears to function in depressing the hyoid
(Ribbink, 1971; Didier, pers. comm.). Although a MHL ligament is present that
may assist lower jaw depression in holocephalans, this mechanism must work in
conjunction with the coracomandibularis in those holocephalan groups in which
the coracohyoideus originates from the coracomandibularis (Didier, 1995).

Although the visceral skeleton in placoderms is poorly known, the presence of
hypobranchial muscles that depress the hyoid arch has been inferred in detailed
morphological analyses of other researchers (Miles & Westoll, 1968; Denison, 1978).
Thus, it appears that the CH-coupling in Chondrichthyes and possibly placoderms
serves to expand the orobranchial cavity by depressing the hyoid. It is unclear
whether the CH-coupling in placoderms included an MH ligament and if such a
linkage was involved in jaw depression.

Experimental analyses of the coracohyoideus coupling in bony fishes (sterno-
hyoideus) and aquatic salamanders (rectus cervicis) indicates that it functions to
depress the hyoid (see Fig. 2) (Lauder, 1985; Lauder & Shaffer, 1993). During hyoid
depression the proximal end of the hyoid is rotated posterodorsally, pulling the MH
ligament which then pulls the proximal end of the lower jaw posterodorsally resulting
in depression of the lower jaw (Liem, 1980; Lauder, 1979, 1980a, 1985; Shaffer &
Lauder, 1985a; Bemis & Lauder, 1986). Although activity in all of the head muscles
overlap broadly during feeding, activity in the sternohyoideus (coracohyoideus
homologue) in bony fishes and rectus cervicis (coracohyoideus homologue) muscles
in salamanders coincides with the mouth opening phase and thus the CH-coupling
is the primary mechanism of lower jaw depression in bony fishes and salamanders
(Osse, 1969; Liem, 1980; Lauder, 1979, 1980a; Barel, 1983; Shaffer & Lauder,
1985b; Lauder & Shaffer, 1985; Bemis & Lauder, 1986; Aerts et al., 1987; Aerts,
1991). The hyoid arch is poorly known in acanthodians. However, a small accessory
element between the hyomandibula and ceratohyal of Acanthodes is presumed to be
an interhyal. The presence of this element indicates that the hyoid arch may have
played a role in the jaw mechanism in Acanthodes similar to that in extant bony fishes
(Miles, 1964, 1968), which suggests that it possessed a CH-coupling similar to that
of extant bony fishes.

Secondary mechanisms for jaw depression that operate independently of the CH-
coupling exist in various groups. Teleosts possess an opercular coupling (see Fig. 2)
(Osse, 1969; Anker, 1974; Barel et al., 1977), and batoids, lungfish and salamanders
have independently evolved a depressor mandibularis coupling (Lauder & Shaffer,
1985; Shaffer & Lauder, 1985a,b; Bemis & Lauder, 1986).

Function of the coracomandibularis coupling

Functional analyses of feeding in Squalus acanthias, N. brevirostris, Sphyma tiburo and
R. lentiginosus indicate that the CM-coupling mediates depression of the lower jaw
in this phylogenetically broad sample of elasmobranchs (Wilga & Motta, 1998a,b,
in review; Motta et al., 1997). Ribbink (1971) proposed that the coracomandibularis
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muscle 13 responsible for depressing the lower jaw in holocephalans. As illustrated
by Didier (1995) and Ribbink (1971), the origin of the coracomandibularis muscle
is ventral to the jaw joint in holocephalans, resulting in a line of action that would
depress the lower jaw. Good evidence based on detailed morphological studies of
placoderms show that a CM-coupling connected the pectoral girdle to the lower
jaw, with a line of action ventral to the jaw joint (Heintz, 1932; Stensio, 1959; Miles,
1969; Miles & Westoll, 1968). As a result of these studies, the CM-coupling in
placoderms has been hypothesized to depress the mandible (Heintz, 1932; Stensio,
1959; Miles, 1969; Miles & Westoll, 1968).

The role of the CM-coupling during feeding is variable in bony fishes and aquatic
salamanders. The branchiomandibularis (coracomandibularis coupling) is active
during lower jaw depression in Amia in capture events and during lower jaw elevation
in manipulation events in Polypterus and Amia (Lauder, 1980a). Some insight into
this apparent dual role is provided by Elshoud-Oldenhave and Osse (1976) and
Lauder (1979, 1981), who noted that the function of the coracomandibularis coupling
changes depending on its line of action. When the line of action is dorsal to the jaw
joint it elevates the lower jaw and when it is ventral to the jaw joint it depresses the
lower jaw. In an anatomical study of the head of Acipenser, Stengel (1962) proposed
that the branchiomandibularis acts to depress the lower jaw. In teleosts, instead of a
branchiomandibularis, the protractor hyoideus (analogous to the coracomandibularis
coupling) protracts the hyoid and compresses the buccal cavity (Osse, 1969; Lauder,
1979; Liem, 1980; Wainwright & Lauder, 1986; Wainwright et al., 1989). Perhaps,
as the sternohyoideus (coracohyoideus coupling) took an increasing role in depressing
the lower jaw, the branchiomandibularis (coracomandibularis coupling) atrophied
until it was lost. Meanwhile, the protractor hyoideus evolved to function primarily
in protracting the hyoid and compressing the buccal cavity.

In an anatomical study of Latimeria, Lauder (1980b) proposed that the co-
racomandibularis acts to elevate the lower jaw or compress the buccal cavity rather
than to depress the lower jaw as reported by Millot and Anthony (1958), Thomson
(1967, 1970), and Trewavas (1959). In Ambystoma, the geniohyoideus (coraco-
mandibularis coupling) is active during lower jaw depression and buccal compression
after the jaws have closed (Shaffer & Lauder, 1985a,b; Lauder & Shaffer, 1985).
The geniothoracis (coracomandibularis coupling) is active throughout the feeding
event from lower jaw depression through lower jaw elevation in Lepidosiren (Bemis
& Lauder, 1986). Distinct muscle attachment sites have led researchers to the
hypothesis that general ‘fish type’ mandibular and hyoid muscles can be restored
in Acanthodes (Miles, 1968). If so, then this suggests that a protractor hyoideus
(coracomandibularis coupling) that functioned similarly to that in Osteichthyes may
have been present in Acanthodes. Thus, the role of the coracomandibularis coupling
in basal bony fishes and acanthodians appears to be both jaw depression and
buccal compression and that in teleosts is primarily in hyoid retraction and buccal
compression.

Evolution of jaw depression couplings
We define the CH-coupling as a coracohyoideus muscle, or its derivative,

originating on the pectoral girdle and attaching on the hyoid with a ligamentous
connection between the hyoid and the mandible. This anatomical configuration
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exists in all living gnathostome groups, apparently existed in acanthodians
(Denison, 1978), and may have existed in placoderms (Miles, 1968, 1969). We
therefore hypothesize that the anatomical CH-coupling was present in the
common ancestor of living gnathostomes (see Fig. 7, Bar #1). However, there
is no clear indicaion of the functioning of the CH-coupling in lower jaw
depression in placoderms. A CH-coupling that functions in jaw depression is
not known from Chondrichthyes. However, the CH-coupling is the primary
mechanism of jaw depression in actinopterygians, lungfishes, and aquatic
salamanders. It has been inferred to function in Latimeria and acanthodians
(Miles, 1964, 1968; Lauder, 1980a,b). Therefore, a CH-coupling that functions
to depress the jaw appears to be primitive for the Teleostomi, as Lauder (1980a,
b) suggested (see Fig. 7, Teleostomi=Acanthodii and Osteichthyes). This
interpretation implies that the anatomical CH-coupling existed in gnathostomes
before a role in jaw depression evolved.

To summarize our interpretation of the evolution of gnathostome jaw mechanics,
we recognize two states of the CM-coupling in gnathostomes (see Fig. 7). A CM-
coupling between the pectoral girdle and mandible that functions to depress the
lower jaw is present in elasmobranchs plus holocephalans and is therefore inferred
to be primitive for Chondrichthyes. Existing interpretations indicate that a cor-
acomandibularis-like muscle in placoderms connected the pectoral girdle and mand-
ible (Heintz, 1932) and we infer by similarity to living groups that this muscle may
have been a jaw depressor in placoderms. If our functional interpretations of the
fossil taxa are correct, and in light of the phylogenetic hypothesis presented in Figure
7 we note that this condition is estimated to have been present in the common
ancestor of placoderms and living gnathostomes (Bar #1 Fig. 7). This conclusion
must be tempered by the lack of unequivocal evidence for the mechanism of jaw
depression in placoderms. In actinopterygians, coelacanths, lungfish, amphibians,
and probably acanthodians the CM-coupling attaches onto the hyoid or branchial
arch and is primarily involved with protraction of the hyoid and compression of the
buccal cavity, but may also contribute to depression of the lower jaw in some groups.
Determination of coracomandibularis muscle function in Acipenser, Polyodon, and
Latimeria awaits experimental analyses. Thus, because this character state is shared
by the major lineages of the Osteichthyes we hypothesize that it is primitive for the
clade (see Bar #2, Fig. 7). These observations imply a transformation series of the
jaw depression mechanism in gnathostomes that begins with jaw depression by the
CM-coupling, as seen in living chondrichthyans. This mechanism was then replaced
by the CH-coupling in Osteichthyes, in conjunction with a shift in attachment of
the analogous CM-coupling which resulted in a more diverse role of the CH-
coupling.

Future research should focus on two areas. First, a refined anatomical
understanding of fossil lineages, such as placoderms, that pre-date the presumed
split between Chondrichthyes and Osteichthyes is needed. Of particular interest
will be estimates of the origin of the mandibulohyoid ligament, and attempts to
test the hypotheses of coracomandibularis function in jaw depression. Because
Chondrichthyes are the only living vertebrate lineages in which jaw depression
is effected by the CM-coupling further functional analyses of holocephalans and
basal elasmobranch taxa will be important to our interpretation of the fossil
forms.
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