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Abstract
Predation is a crucial ecosystem function, transferring nutrients and shaping the abundance and diversity of animals within 
communities. On coral reefs, fish-fish predation (i.e., piscivory) is arguably one of the best known ecosystem functions, yet 
is also one of the least well quantified. Recent work has suggested that the prey capture performance of piscivorous fishes 
may differ when feeding on actively swimming vs. cryptobenthic fish prey. However, the extent of this difference remains 
unquantified. Our goal, therefore, was to conduct performance-based experiments comparing piscivorous fishes feeding on 
two different fish prey types, namely, actively swimming vs. cryptobenthic prey (i.e., prey sitting on the benthos). While 
predators were able to immediately detect actively swimming prey, when feeding on cryptobenthic prey, predators were 
generally unable to detect the prey until it moved. Both focal predators, the grabber Pseudochromis fuscus and the engulfer 
Pterois volitans were less successful at capturing cryptobenthic prey (mean 28% probability of capture), compared to actively 
swimming prey (85%). Overall, our study demonstrates the heterogeneous nature of fish predation on coral reefs, and the 
challenges of feeding on different prey functional groups.
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Introduction

Predator–prey interactions are a major driver in shaping 
communities which, in turn, shape ecosystem processes 
(Estes and Palmisano 1974; Ripple et al. 2001; Mihalitsis 
et al. 2022). In highly diverse systems, such as coral reefs, 
fish predation by fishes (i.e., piscivory) has been found to 
have a significant impact on population dynamics (Hixon 
and Carr 1997; Almany and Webster 2004; Albins and 
Hixon 2008). Predation may also influence trophodynamics 
at an ecosystem process level (Brandl et al. 2019). However, 

predation success may vary among species. There is, there-
fore, a need to explore the basis for variation in predation 
success. One of the most promising avenues is from a func-
tional approach.

Recent work has identified functional groups in coral reef 
fishes, both as predators (Mihalitsis and Bellwood 2021) 
and prey (Mihalitsis et al. 2021), and found these groups 
can broadly reflect predator–prey interactions at a commu-
nity level (Mihalitsis et al. 2022). These studies suggested 
that functional groups of predator and prey may not interact 
homogenously, due to functional performance differences in 
both the predators (i.e., prey capturing) and prey (i.e., preda-
tor detection and escaping). Specifically, while small-bodied, 
elongate, benthic ‘sitting’ fishes (from here on referred to as 
cryptobenthic) are highly abundant on coral reefs (Depczyn-
ski and Bellwood 2004; Brandl et al. 2018) they may not be 
equally accessible (i.e., their capture probability compared 
to other prey) to different types of predators (i.e., grabbers 
vs. engulfers, sensu Mihalitsis and Bellwood (2021)).

Cryptobenthic fishes are important for coral reef eco-
systems, as they provide both energy and nutrients to other 
fishes (Brandl et al. 2019). These fishes die at exception-
ally high rates (Steele and Forrester 2002; Depczynski 
and Bellwood 2005, 2006; Hernaman and Munday 2005; 
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Winterbottom and Southcott 2008). While many of these 
fishes can be found in 'open' reef areas, sitting on turfs, rub-
ble, or coral (Depczynski and Bellwood 2004; Hernaman 
and Munday 2005; Doll et al. 2021; Hemingson et al. 2022), 
they manage to stay hidden from the numerous predators 
long enough to breed and sustain viable populations. How-
ever, the specific mechanism through which this is achieved, 
remains unknown. Previous work has suggested that high 
growth rates (Gillooly et al. 2001), constant year-round set-
tlement (Lefèvre et al. 2016), and abundant larvae (Brandl 
et al. 2019) are all important. While these factors are likely 
to be contributing to the ability of cryptobenthic fishes to 
persist as viable populations on coral reefs, the predation 
pressure these fishes face at the exact moment of predation 
is poorly understood. Goatley and Bellwood (2016) showed 
that cryptobenthic fishes spend almost all their lives in the 
vulnerable high-predation size classes. This raises the ques-
tion: do they have any predation avoidance mechanisms and 
if so, how effective are they?

In the current study, we test the ability (through aquar-
ium-based performance experiments) of two piscivorous 
coral reef fishes (a grabber Pseudochromis fuscus and 
engulfer Pterois volitans), to feed on both cryptobenthic 
and actively swimming fishes as prey. We test the ability 
of these predators to both successfully detect, and capture 
these different types of prey fishes. Overall, we test whether 
predators exhibit different capture success when feeding on 
different fish prey groups.

Materials and methods

Performance experiments

All experiments were carried out at the James Cook Univer-
sity (JCU) between 2020 and 2021. Housing and experimen-
tal protocols were in accordance with the JCU Animal Ethics 
Committee (A2523). Holding and experimental tanks were 
connected to a flow-through filtration system, with lighting 
in tanks between 9 a.m. and 6 p.m. All fishes were fed com-
mercially available food (prawns or pellets) daily (unless 
predators were in the experimental phase, see below). All 
tanks were allowed to grow algae turfs on the bottom and 
sides to reduce reflection. It also provided a more natural 
substratum mirroring the algal turfs over which many reef 
gobies reside (Hemingson et al. 2022).

We studied two predator species. The first, Pseudochromis 
fuscus has been categorized in the functional group of grab-
bers, which primarily capture prey tail-first, through a long-
distance strike, using their caniniform teeth (Mihalitsis and 
Bellwood 2021). The second, Pterois volitans has been cat-
egorised in the functional group of engulfers, capturing prey 
head-first by having a large mouth, high upper jaw protrusion 

and no visible teeth (Mihalitsis and Bellwood 2019, 2021). 
We used the pomacentrid Acanthochromis polyacanthus as 
an actively swimming (AS) prey fish. The functional group 
of cryptobenthic substratum dwellers (sensu Mihalitsis et al. 
2021) (hereby referred to as cryptobenthic) encompasses 
small-bodied, elongate, fishes, that ‘sit’ on the benthos, for 
which the likely anti-predatory benefits are discussed in 
(Mihalitsis et al. 2021). In our study, we used the goby Evi-
ota zebrina for experiments with P. fuscus. For experiments 
with P.volitans, we primarily used larger Eviota zebrina, but 
also the goby Asterropteryx semipunctatus, and the blenny, 
Ecsenius sp., for larger predator individuals. This was done 
to ensure that all predators fed on similar relative prey sizes, 
as relative prey size is perhaps one of the strongest influ-
ences on the ability of predators to capture prey (Pepin et al. 
1992; Christensen 1996). A total of 31 A.polyacanthus, 21 
Eviota zebrina, 5 Asterropteryx semipunctatus, and 4 Ecse-
nius sp. were used in our experiments. The potential for 
differences among cryptobenthic species in attack response 
latency was tested, and was found to be non-significant (see 
Supplemental Fig. S1). The average prey size used for the 
experiments, in terms of prey body depth/predator gape size, 
was 0.71 ± 0.04 S.E (Standard Error), closely reflecting natu-
ral prey sizes (Mihalitsis and Bellwood 2021). Experiments 
were carried out in 20L aquaria. Only a single predator was 
held in an aquarium at a time, and was acclimatised for at 
least one week prior to experiment initiation.

Predators were starved for 24 h prior to experimental 
feeding. Prior to the experiment, an opaque tank separator 
divided the tank into two arenas, to ensure the predator and 
prey could not see each other. A single prey fish was then 
measured (Standard Length, SL and Body Depth, BD) in 
a zip-lock bag (thus avoiding skin contact and preventing 
potential effects of handing, on predator behaviour due to 
olfactory cues). The prey fish was then introduced to the 
empty side of the tank and was allowed one minute to orient 
itself before the tank separator was removed. The feeding 
event was then filmed using a Go-Pro camera to film in real 
time, and a Sony RX100 IV to capture the strike of the pred-
ator in slow motion (250 fps). Prey fish were removed after 
one minute if the predator failed to strike. If the predator 
made a non-lethal strike, the prey was immediately removed 
from the tank, and euthanised. A successful capture by the 
piscivore was defined as the piscivore capturing and hold-
ing the prey in its mouth for ≥ 3 s upon the first strike (i.e., 
performance). After a successful feeding event, the preda-
tor had to fully digest the prey before another feeding trial 
could commence. This usually took two to four days and was 
assessed by visually inspecting for swelling in the stomach 
area of the predator and the behaviour of the predator upon 
a researcher approaching the tank. We used three P.fuscus 
(Standard Length = 56.4 mm ± 1.008 S.E) and four P.volitans 
(Standard Length = 99.5 mm ± 20.7 S.E) individuals. Each 
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predator individual was fed between 3 and 5 individuals of 
each prey type (active swimmer vs. cryptobenthic).

We first quantified the ability of predators to detect the 
two types of prey. Prey detection was quantified based on the 
behaviour of the predator, i.e., turning towards the prey and 
approaching or striking at it. Immediate detection was quan-
tified as the predator detecting prey within the first 2 s of the 
tank separator being removed. We also quantified the onset 
of prey escape relative to the predator strike initiation. Pred-
ator strike initiation was quantified from the slow motion 
footage (250 fps), and was defined as the frame at which 
the predator significantly increased its velocity, through a 
visible s-shaped bending on the posterior end of its body. 
Prey escape onset was defined as the frame at which the prey 
began to turn its body away from the predator, as a response 
to the predator striking. If there was no evident reaction by 
the prey, this variable was given the value of the predator 
strike duration (given that zero would mean the prey initi-
ated an escape upon the predator initiating the strike). Only 
strikes where the prey did not appear to be influenced by the 
glass of the aquarium at the moment of strike, were used in 
this analysis.

Statistical analysis

Statistical analyses were all carried out in a Bayesian frame-
work, in the software R (R Core Team 2017). Experimen-
tal data were analysed using Bayesian Generalised Linear 
Models (BGLM) in the packages 'stan' (Team 2018) and 
'rstanarm' (Goodrich et al. 2018). For both (1) immediate 
detection probability, and (2) probability of successful cap-
ture upon first strike (as response variables), predator spe-
cies and prey groups were the explanatory variables, and a 
binomial distribution was used. For the onset of prey escape 
(response variable) predator species and prey groups were 
again the explanatory variables, using a gaussian distribution 
(based on the distribution and nature of the data). All mod-
els were analysed with three chains, 5000 iterations (war-
mup = 2000), a thinning factor of 5, and an adapt delta value 
of 0.99. All models were then compared using the 'leave 
one out (loo)' cross validation method, in the 'loo' package 
(Vehtari et al. 2020). Model diagnostics were conducted 
using the 'DHARMa' package (Florian 2020). Model pre-
dictions were examined using the 'emmeans' package (Lenth 
2019), and visualisation was explored using the 'ggplot2' 
package (Wickham 2016).

Results

In all but one trial, actively swimming prey were imme-
diately detected upon experiment initiation, whereas for 
cryptobenthic prey, immediate detection occurred in less 

than half of all strikes, and the prey was only detected fol-
lowing prey movement (Fig. 1a). Specifically, the imme-
diate detection probability for an actively swimming prey 
fish was 94% (78–100 Highest Posterior Density, HPD) by 
Pseudochromis fuscus, and 99% (92–100 HPD) by Pterois 
volitans (Fig. 1a). By contrast, for cryptobenthic prey, the 
immediate detection probability was 37.5% (15–63 HPD) by 
P.fuscus, and 41% (20–65 HPD) by P.volitans (Fig. 1a). For 
model details, please see Supplemental Table 2. In summary, 
while actively swimming prey were immediately detected, 
for the majority of predation events involving cryptobenthic 
prey, neither predator species were able to detect the prey 
until it moved (by a burst-and-coast swim).

Upon detection, predators approached the prey and pre-
pared to initiate a strike. For strikes by P.fuscus, the escape 
onset by prey (relative to predator strike initiation), was 
-9.2 ms (-26.9—9.03 HPD) for cryptobenthic prey, and 
11.18 ms (-12.2—32.01 HPD) for active swimming prey 
(Fig. 1b). For strikes by P.volitans, the escape onset by 
prey, was 61.27 ms (42.2—78.31 HPD) for cryptobenthic 
prey, and 38.69 ms (16—61.85 HPD) for active swimming 
prey (Fig. 1b). The model with the best predictive accuracy 
(using the loo criterion) was one with an interaction term 
between predator species and prey as explanatory variables, 
indicating that prey escape onset was dependant on both 
the predator type and the prey type (for detailed model see 
Supplemental Table 2). In summary, for P.fuscus, both prey 
types initiated escapes faster (sometimes before the preda-
tor initiated the strike), compared to their reaction times to 
strikes from P.volitans.

When prey was detected, a strike was initiated, and 
the prey initiated an escape. P. fuscus had a median 71% 
(50–90% HPD) probability of successfully capturing dam-
selfish prey; for P. volitans it was 92% (80–99% HPD). 
By contrast, P. fuscus had a median 15% (3.1–35% HPD) 
probability of successfully capturing cryptobenthic prey, 
whereas for P.volitans it was 46% (25–67% HPD) (Fig. 1c). 
The model with the best predictive accuracy (using the loo 
criterion) was one with predator species and prey as explana-
tory variables, without an interaction term, indicating the 
effect of prey type was the same for both predator species 
(for detailed model see Supplemental Table 2). In summary, 
while both predators were highly successful at capturing 
damselfish, they were less successful at capturing crypto-
benthic prey.

Discussion

Our results demonstrate the ability of some cryptobenthic 
fishes, to reduce their vulnerability to predation. As a first 
barrier, these fishes are highly effective at crypsis, with 
predators primarily able to detect them when they move. 
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Secondly, if they are detected, the identity (and likely strik-
ing behaviour) of the predator determined their escape onset, 
with both cryptobenthic and active-swimming prey reacting 
faster to strikes by Pseudochromis fuscus. Upon the predator 
striking, cryptobenthic prey were harder to capture, when 
compared to an actively swimming damselfish. Our findings 
support the hypothesis that piscivory on coral reefs may not 
be a 'one-prey fits-all' relationship when considering body 
size vs. mortality. Overall, we show that fish predation on 
coral reefs may be shaped by both predator and prey at the 
moment of capture.

It has been suggested that cryptobenthic fishes rely pri-
marily on crypsis to avoid detection by predators (Brandl 
et al. 2018; Hemingson et al. 2022). Our results support 
this suggestion and emphasise the importance of crypsis 
in avoiding predation by the three cryptobenthic fishes that 
we studied. Cryptobenthic fishes, while highly abundant on 
reefs, may not be as easily detectable on the reef as freely 
swimming fishes. The visual abilities of predatory fishes has 
previously been studied with regards to acuity and sensitiv-
ity (Goatley and Bellwood 2009; Schmitz and Wainwright 
2011; Fogg et al. 2022). Recent advances in technology have 
allowed us to view a reef through the eyes of a predator, 
showing how quickly acuity can decrease, further strength-
ening the hypothesis of crypsis as a highly effective anti-
predatory strategy on reefs (Caves et al. 2017). Reef preda-
tors may therefore rely more on prey movement, as opposed 
to pattern recognition, in order to detect them. Indeed, in our 
study, the majority of strikes on cryptobenthic prey fishes 
(60%), by both functional groups of predators, occurred only 
after the prey moved.

Furthermore, our results show that even if a cryptoben-
thic prey fish is detected, it can still be more difficult to 
capture, compared to an actively swimming prey fish. The 
mechanistic basis for this has yet to be determined. Mihalit-
sis et al. (2021) suggest a link to the nature of the predators' 
strike, with a ram strike directed towards the substratum 
causing difficulties for the predators (i.e., potential of the 
predator damaging its teeth/jaws). However, here we find 
that an engulfing lionfish also showed decreased capture suc-
cess on cryptobenthic prey. We suggest that our results may 

Fig. 1   Predation events between two species of predator (Pseu-
dochromis fuscus and Pterois volitans) and two types of prey (crypto-
benthic ‘sitting’ vs. active swimming). a Probability of immedi-
ate detection by a predator, leading to a strike on cryptobenthic and 
active swimming prey. A value of one was assigned for strikes initi-
ated by the predator immediately upon the prey being visible to the 
predator; a value of zero was assigned for detections/strikes by the 
predator that were initiated only after the prey moved by swimming. 
b Prey escape onset (ms) relative to the predator strike onset (t = 0). 
c Probability of predators successfully capturing different prey types. 
Model predictions are shown in boxplots and outlier points, coloured 
depending on the prey type; blue = actively swimming damselfish, 
brown = cryptobenthic. Dots represent raw data

▸
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be linked to the sensory and swimming abilities of crypto-
benthic fishes, or the approaching/striking behaviour of the 
predator.

Changes in water flow are primary stimuli to which fishes 
respond, through multiple neurological tissues (Webb 2014). 
However, the speed at which fishes react to external stimuli 
changes depending on the detecting structure. For exam-
ple, responses to visual stimuli in zebrafish (Danio rerio) 
were found to take approximately 200 ms (Burgess and Gra-
nato 2007), whereas for a flow stimulus, they were able to 
respond in less than 4 ms (Liu and Fetcho 1999). Indeed, 
visual stimuli are found to take a longer path to trigger the 
Mauthner (M-) cells (neuron cells responsible for initiating 
escape response), as opposed to mechano-acoustic stimuli 
(Mirjany and Faber 2011; Domenici and Hale 2019). Fur-
thermore, fishes with faster escape responses (i.e., smaller 
escape latency) are known to have a higher survival prob-
ability (McCormick et al. 2018). Therefore, for fishes as 
prey, visual stimuli, as well as water flow-related detection 
of movement may be important against predators.

Recent work has identified the potential for highly differ-
entiated sensory abilities of some cryptobenthic fishes (e.g., 
Elacatinus) compared to other fishes, which include having 
a reduced lateral line system, a proliferation of superficial 
neuromasts, and the presence of a large sacculus, containing 
a large saccular otolith in the inner ear (Nickles et al. 2020; 
Majoris et al. 2021). The function of these saccular otoliths 
in gobies has been suggested to enhance the detection of 
sound pressure, or for the detection of particle motion (Pop-
per et al. 2021). The superficial neuromasts, found along 
the body of the fish, have also been suggested to function as 
hydrodynamic water flow (velocity) detectors (Montgom-
ery et al. 1997). For cryptobenthic fishes on coral reefs, the 
ecological function of this proliferation in neuromasts, has 
also been suggested to function for flow-refuging (avoiding 
areas with rapid water movement) (Goatley et al. 2021). Our 
results therefore suggest that the sensory abilities of crypto-
benthic fishes in relation to predation, may be an interesting 
avenue for future research. In this context the presence of the 
substratum may be an additional feature reducing predation. 
The substratum represents a refuge of no water movement 
associated with a strong boundary layer. The closer the prey 
are to the substratum the harder it will be to suck them from 
a surface; the presence of the substratum may effectively 
neutralize some suction force.

Our results also suggest that the approach behaviour 
of the predator may impact the timing of prey escape 
initiation. Pseudochromis fuscus has been observed to 
frequently carry out a pursuit behaviour, resulting in a 
decreased capturing success rate (Feeney et al. 2012), as 
opposed to Pterois volitans, which is known to display 
more of an ambushing behaviour (Mihalitsis and Bellwood 
2021). Furthermore, P.volitans is also known to display 

a specialised feeding behaviour, where, upon detection 
and approaching prey, P.volitans blows water jets towards 
the prey (Albins and Lyons 2012)(also carried out by 
P.volitans in our study). This behaviour results in the prey 
sensing this water jet, turning towards/into the water flow 
(i.e., rheotaxis) and thus the predator coaxes the prey to 
face the predator, allowing the predator to capture the prey 
head-first (Albins and Lyons 2012), an essential compo-
nent of prey capture in this functional group of piscivorous 
fishes (Mihalitsis and Bellwood 2017, 2021). Overall, our 
results suggest that the approaching behaviour of predators 
towards prey, can have significant effects on the escape 
onset of prey fishes.

It is suggested that fishes living in complex environ-
ments such as coral reefs, tend to have better fast-start 
performance skills than fishes living in structurally sim-
pler environments (Domenici and Blake 1997). Complex 
environments reduce predator–prey interactions to brief 
encounters, where unsteady swimming and manoeuvrabil-
ity is advantageous for both predator and prey (Domenici 
and Blake 1997). Our results also highlight the enhanced 
ability of Pterois volitans, an engulfer, to capture crypto-
benthic prey, when compared to Pseudochromis fuscus, a 
grabber. While further work on other predator species will 
be needed to establish the generality of our results for the 
engulfer-grabber dichotomy.

Cryptobenthic fishes spend their whole life in the most 
vulnerable size classes, where they face significantly high 
mortality rates (Goatley and Bellwood 2016; Mihalitsis 
et al. 2021). Any traits resulting in predation reduction 
may, therefore, have far reaching impacts for fishes that 
may spend only a few weeks on the reef. It seems that 
crypsis, immobility and fast escape responses are crucially 
important for these species offering advantages against 
members of both major predator functional groups. In 
predator–prey interactions the prey can influence the out-
comes as much, or potentially more, than the predators. 
Overall, our study demonstrates the heterogeneous nature 
of fish predation on coral reefs, by showing that predator 
and prey functional groups may not interact with the same 
outcomes. We suggest that, ultimately, the detection of 
prey may be determined by the eyesight performance of 
the predator, prey escape initiation by the approach behav-
iour of the predator, and the outcome of the strike by both 
predator and prey performance.
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