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Rates of lineage diversification vary considerably across the tree of life, often as aresult
of evolutionary innovations'™. Although the ability to produce new traits can vary
between clades and may drive ecological transitions®®, the impact of differencesin the
pace at which innovations evolve at macroevolutionary scales has been overlooked.
Complex teeth are one innovation that contributed to the evolutionary success of
major vertebrate lineages'® 2. Here we show that evolutionary lability of tooth
complexity, but not complexity itself, spurs rapid diversification across ray-finned
fishes. Speciation rates are five times higher when transitions between simple and
complex teeth occur rapidly. We find that African cichlids are unique among all fishes;
they are dominated by lineages that transition between simple and complex teeth at
unparalleled rates. This innovation interacted with the ecological versatility of complex
teeth to spur rapid adaptive radiations in lakes Malawi, Victoriaand Barombi Mbo. The
marked effect on diversification stems from the tight association of tooth complexity

with microhabitat and diet. Our results show that phylogenetic variationin how
innovations evolve can have a stronger effect on patterns of diversification than the
innovationitself. Investigating the impact of innovations from this new perspective
will probably implicate more traits in causing heterogeneous diversification rates

across the tree of life.

Variation in the processes of speciation and extinction has led to an
unevendistribution of species across both geographicregions and the
tree of life' *. Evolutionary innovations are often cited when diversity
varies considerably between clades, a classicexample being the phar-
yngeal jaw of cichlid fishes™. These traits shape phenotypic, ecological
or lineage diversification rates by facilitating access to new adaptive
peaks, often by unlocking previously inaccessible resources™> ™. How-
ever, clades can differ in their capacity to generate novelty® *'®, Varia-
tion in how innovations evolve across clades has been overlooked as
afeature, or as an innovation itself, that shapes macroevolutionary
diversification patterns. This necessitates an altered approach to key
innovation studies in which differencesin evolutionary lability—therate
atwhichaninnovationis gained and lost—could instead generate the
observed differencesin species diversity. This effect on diversification
may be strong when the trait is tightly coupled with one or more axes
of divergence and change in the state of the trait leads to ecological
shifts’. Increased lability of ecological innovations may be a feature of
many adaptive radiations because niche expansion is crucial during
the speciation process'. However, identifying phylogenetic variation
in lability requires replicated innovations across broad taxonomic
scales to overcome the confounding effect of macroevolutionary
singularity’.

Theteeth of jawed vertebrates show marked increases in complexity
through the addition of tooth cusps over the past 200 million years?.
Teethwithmultiple cusps are akeyinnovationinthe traditional sense.
Their origination left a detectable effect on the tempo of mammalian

and squamate evolution by expanding the range of achievable diets
and increasing energy intake efficiency'® 2. Complex teeth have also
evolved in multiple orders of ray-finned fishes (Actinopterygii)®,
whose more than 35,000 extant species constitute half of vertebrate
diversity. The success of some fish groupsis frequently attributed to
functional innovations, many related to the feeding apparatus, that
stimulate new evolutionary trajectories®?, Complex teeth, although
found in lineages that occupy a range of habitats, are often associ-
ated with herbivory in productive shallow-water environments?*%,
Transitions between simple and complex teeth are thus linked to
change in diet and habitat, two important speciation axes in fishes?.
These observations suggest that high lability of tooth complexity may
beimportant for generating exceptional species diversity inadaptive
radiations, during which diversification along these axes proceeds
rapidly. Moreover, the replicated evolutionary origins and subse-
quent losses of complex teeth across fishes affords an opportunity
to identify differences in lability across a broad phylogenetic scale.
Here we reconstruct the evolution of complex teeth for more than
88% of extant ray-finned fishes to address how phylogenetic variation
in the evolution of this vertebrate innovation has shaped the tempo
of evolutionary diversification in fishes. We test explicit predictions
that tooth complexity and its evolutionary lability are key innova-
tions for African cichlids, afamous example of adaptive radiation. By
interrogating the effects of each across phylogenetic scales, we show
that exceptional diversificationis explained by differencesin lability
rather than complexity itself.
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Fig.1| The evolutionary dynamics of tooth complexity across ray-finned
fishes.a, MAP ancestral state reconstruction of complex teeth across ray-
finned fishes (n=11,508 species) using stochastic character mappingundera
hidden-rates model with tworate categories. Branches are coloured by tooth
complexity and lability (simple low lability, grey; simple high lability, dark blue;
complexlowlability, red; complex high lability, gold). Major rate increases about
100 Ma are marked withblue points, and the earliest transition to complex teeth
ismarked withared point. Outlines represent highlighted clades (fromleft
toright) Mormyridae, Characiformes, Loricariidae, Mochokidae, Siganidae,
Acanthuridae, Pomacanthidae, Liparidae, Nomeidae and Stromateidae,
Gobiidae, Mugilidae, Pomacentridae, Gobiesocidae, Cichlidae, Beloniformes
and Cyprinodontiformes. b, Proportion of branchesin each state of tooth
complexity (simple and complex) and lability (low and high) in million-year
intervals. The x axis represents time before presentin million years, progressing
from left (past) toright (present). The dashed line marks the K-Pgboundary

Heterogeneous evolution of complex teeth

Tostudy the evolution of tooth complexity across ray-finned fishes, we
classified 30,915 extant species as having simple (single cusp) or com-
plex (multiple cusps) teethin their oraljaws (Supplementary Table1),
generating one of the largest datasets of a vertebrate morphological
trait. Bayesianmaximuma posteriori (MAP) ancestral state reconstruc-
tion and stochastic character mapping in RevBayes? reveals multiple
evolutionary origins of tooth complexity across extant actinoptery-
gians (Fig.1a). Complex teeth have evolved at least 86 times, appearing
firstin the Early Cretaceous 110 million years ago (Ma), both in single
lineages (for example, Helotes sexlineatus, the Eastern striped grunter)
and at the base of large clades (for example, Characiformes; Fig.1aand
Supplementary Table 2). The proportion of lineages with complex
teeth has gradually increased since the Cretaceous-Palaeogene (K-Pg)
mass extinction (Fig. 1a,b). Despite this, complex teeth remain rare
(11.7% of extant species) across fishes. Reversions to simple teeth are
substantially more frequent (1.25-50 times higher transition rate) and
numerous (n =110 reversions). These often occur in large multicuspid
clades (Fig.1a,c) whenlineages shiftinto specialized predatory niches
(for example, Hydrocynus, the African tigerfish, in Alestidae). The fre-
quentreversions parallel squamate dental evolution and contrast the

about 66 Ma. Colours follow thoseina. c, The proportion of lineages with
complex teeth (x axis) and high lability (y axis) across families that have at least
onelineage with complex teeth (n=31families). Point colour indicates the
family mean speciationrate, shape represents habitat (freshwater, marine or
both) andsizeindicates the number of speciesin the family. DR, diversification
rate statistic.d,e, Distribution of log-transformed tip speciation rates between
lineages with simple (n=10,361species) and complex (n =1,147 species) teeth
(P=0.0602; d) and lineages with low (n=11,075 species) and high (n =433
species) lability (P=0.0025; e). Box plots show the median (middle horizontal
line), interquartile range (box), minimum-maximum values (vertical lines) and
outliers (points). Two-tailed significance was assessed using non-parametric
FiSSE tests. f, Transition rates, reported as the number of transitions per million
years, between simple and complex teeth when lability is low compared to when
labilityis high. Arrows indicate transition direction; colours follow thosein a.

more unidirectional pattern in mammals", and the numerous origins
(n=286)suggest that complex teeth have evolved from a simple state far
moretimes in fishes thaninsquamates (24 independent origins™) and
mammals (plesiomorphic®®). Lineages with complex teeth dominate
several diverse, primarily freshwater groups including Characiformes
(Characidae and Serrasalmidae), Cyprinodontiformes (Cyprinodonti-
dae and Goodeidae), Cichlidae and Loricariidae (Fig. 1a,c). They also
appear in the enigmatic driftfishes (Nomeidae and Ariommatidae),
lanternfishes (Myctophidae) and pencil catfishes (Trichomycteridae),
albeit less frequently (Supplementary Table 1).

Tounderstand how the evolution of tooth complexity varies across
Actinopterygii, we compared the fit of several Markov models of char-
acter evolution, including some that accommodate rate variation,
using marginal likelihoods and Bayes factors. Our results show that the
gain and loss of tooth complexity is a heterogeneous process across
ray-finned fishes defined by significant variation in transition rates
(Fig.1a,c,f and Supplementary Tables 3-5; Bayes factor (BF) = 6.74).
Most lineages over time, including 96.2% (n = 11,075 species) of extant
actinopterygiansinour analyses, are defined by low evolutionary labil-
ity (Fig. 1b). Thisis a processin which tooth complexity is gained atan
exceptionally slowrate and islost at arate 50 times faster, resulting in
asingle origin and retention in most descendant lineages (Fig. 1c,f).
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Fig.2|Rapid evolution of tooth complexity accelerates species (present). The dashed lines mark the ages of Lake Tanganyika (9.7 million years)
diversificationin African cichlids. a, MAP ancestral state reconstruction and Lake Malawi (about 3.2 millionyears). All lineages endemic to Lake Victoria
across cichlids from Africa, Madagascar and South Asia (n =1,069 species) arefoundinthe bar closest to the present.c, Posterior distribution of log-
under anequal-rates model with four hidden rate categories. Lineages with transformed transition rates between simple and complex teeth. The mean
simpleteeth are coloured variations of blue, and lineages with complex teeth ofeach distributionisindicated with black triangles. Note the magnitude of
arecoloured variations of red; brighter colours represent higher rates (that s, variationbetween levels of evolutionary lability. d, Posterior distribution of
differentlevels of lability). b, Proportion of branchesin each state of tooth speciationrates estimated under aMuHiSSE-4 model. Note the different scales
complexity and lability in million-year intervals. The x axis represents time ofbaseline speciation between the four hidden states. Colours follow the
before the presentin millionyears, progressing from left (past) to right varyinglevels of lability inc.

We identified an increase in the transition rate between simpleand  we find that increased evolutionary lability, regardless of tooth com-
complex teeth—high evolutionary lability—originating duringthe Early  plexity, increases speciation rates by five times compared to when
Cretaceous (Fig.1a,b) and defining just 3.8% (n = 433 species) of extant  lability islow (4,,,, = 0.116 (5.d. 0.206), A, = 0.595 (s.d. 0.958); one-way
lineages. These taxaevolved complex teethataratethreeordersofmag-  phylogenetic ANOVA; F=1267.05, Cohen’s d = 0.69, P< 0.005; FiSSE
nitude greater than whenlability is low with amajorreductionintherel-  two-tailed P<0.005; Fig. 1e). Speciation rates for lineages that evolve
ativerate at which complexityislost (Fig.1f). These groups—primarily  complexteeth at higher rates with alower relative rate of cusp loss are
African Cichlidae, Liparidae, Mormyridae and Serrasalmidae—are  faster by 0.479 lineages per million years. Although there are many
notable in having a high proportion of lineages with complex teeth  predominantly complex families (Fig. 1c), these results show that rapid
(Fig. 1c and Extended Data Fig. 1a,b), high speciation rates and high  switching between simple and complex teeth, but not complex teeth
rates of phenotypic evolution® ., alone, has accelerated the diversification of some exceptional groups
We then explored the effects of tooth complexity anditsevolutionary  ofray-finned fishes.

lability onspeciationrates given that bothinnovations and phenotypic

evolvability may shape speciation dynamics at large macroevolutionary

scales®2 We used a non-parametric test for state-dependent specia- Complexity evolves rapidly in cichlids

tion to test for effects of tooth complexity and lability. For lability, we ~ Amongray-finned fishes, cichlids have attracted intense interest from
assigned each species to the MAP rate regime (low or high) estimated  evolutionary biologists owing to their remarkable adaptive radiations.
through our ancestral state reconstruction, regardless of toothcom-  Many advances have been made in understanding their rapid accumu-
plexity. Although speciation rates for complex-toothed lineages are  lation of species diversity, implicating a combination of key innova-
twice as high as those for simple-toothed lineages (Aompiex = 0.239 (s.d.  tions'*** and rapid ecological diversification driven by exceptional
0.556), Agimpie = 0.122 (s.d. 0.239)), tooth complexity alone does not  genomic potential®***’. Yet many proposed innovations are unable
have a significant effect on speciation rates (one-way phylogenetic  to explain varying rates of species diversification®. High lability of
analysis of variance (ANOVA), F=170.58, Cohen’sd=0.27,P=0.194; tooth complexityis concentrated within Cichlidae (>50% of all lineages
FiSSE two-tailed P=0.06; Fig. 1d). Speciation rates for lineages with  with high lability; Extended Data Fig. 2c) but separates the continen-
complex teeth are faster by 0.117 lineages per million years. The high  tal radiations of Africa and the Neotropics (Fig. 1c). All Neotropical
tip-ratio bias®, low power of FiSSE compared to formal state-dependent  lineages have low lability and only one (Herotilapia multispinosa) has
speciation and extinction (SSE) models, and numerous simple-toothed  complex teeth. Africancichlids are dominated by lineages that rapidly
lineages with exceptional speciationrates (Extended DataFig.1) prob-  transition between simple and complex teeth with a high proportion
ablyreduce our ability to detect significant rate asymmetry. However, of complex-toothed lineages, a feature unique among all ray-finned
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Fig.3|State-dependentdietdiversificationin cichlids. a, Directionality and
magnitude of transitions between diet categories within simple (blue hues) and
complex (red hues) lineages. The maximum width of inner connectionsisscaled
by the mean estimated transition rate, and the width of outer barsisscaled by
the total number of transitions to and from each category. Arrows indicate
directionality. Labels correspond to diet (OM, omnivore; PS, piscivore; ZB,
zoobenthivore; ZP, zooplanktivore; HB, herbivore; CS, carnivore specialist).

b, Violin plot depicting asignificantincrease inmeanlog + 0.01-transformed
diet transition rates when lineages have complex teeth (P=1.89 x107*). Each
point correspondsto the meanrate of the posterior distribution estimated

for eachtransition (n =30 simple; n=30 complex). Box plots show the median
(middle horizontal line), interquartile range (box) and minimum-maximum
values (vertical lines). Statistical significance was calculated using one-way
ANOVA. ¢, Number of simple (blue) and complex (red) lineages within each
discrete diet category.

fishes (Fig. 1a,c). We further explored how complexity and increased
evolutionary lability shape rates of species and ecological diversifica-
tion within African cichlids.

We generated an expanded dataset of tooth complexity classifica-
tions covering 92.7% of described cichlid species and representing all
generafrom Africa, Madagascar and South Asia (n =1,069 species; Sup-
plementary Table 6). We then fitted an expanded set of hidden Markov
models over a recent complete phylogeny of Cichlidae® to further
study how tooth complexity evolves within African cichlids. We find
that tooth complexity evolvesin African cichlids at unparalleled rates
under a process that contrasts with that of all other actinopterygians.
Complex teeth evolve and are lost at equal rates (BF =15.46), unlike
the global processin which complexity is far more likely to be lost than
gained (Fig. 1a,f and Supplementary Table 7). These rates vary by ten
orders of magnitude across the cichlid tree (Fig. 2a,cand Extended Data
Fig.3),and an exceptionally high rateis unique to rapidly diversifying
lineages (Fig. 2a), including many haplochromines endemic to lakes
Malawi and Victoria, as well as oreochromines endemic to Lake Barombi
Mbo. This notable increase in lability is recent, originating within the
Haplochromini about 9 Ma (Fig. 2a,b).

Lability and complexity are innovations

Innovations may accelerate lineage diversification by increasing spe-
ciation, decreasing extinction or both®. To formally test whether tooth

complexity increases rates of lineage diversification within African
cichlids, we compared the fit of SSE models in RevBayes”. We fitted
these models over four subtrees to account for the extreme speciation
rate variation within African cichlids® and compared models within
each subtree using marginal likelihoods and Bayes factors. We find that
tooth complexity alone cannot explain patterns of lineage diversifica-
tion; character-independent models were strongly supported across
all subtrees (Supplementary Table 8), suggesting that speciation and
extinction rates do not depend on whether lineages have simple or
complex teeth.

Change in tooth complexity is primarily associated with shifts in
habitatand dietin cichlids®. Therefore, we tested whether increased
lability of tooth complexity shapes speciation and extinction rates. We
assigned each species to the MAP transition rate class estimated from
our ancestral state reconstruction to represent four discrete levels
of lability (very low, low, high and very high). We then compared the
fit of four-state hidden-state speciation and extinction models and
character-independent models fitted across the full tree (n =1,069
species). We find decisive support (BF =175.91) for astate-dependent
model in which high lability consistently increases speciation rates
across different background rate regimes (Fig. 2d and Supplemen-
tary Table 9).Speciationrates are1.3-2.5times higher when lability is
increased across all four hidden states (MuHiSSE-4; Fig. 2d, Extended
DataFigs.4 and 5 and Supplementary Table 10). This effect on diversi-
fication is largely consistent across different relative extinction sce-
narios (Extended Data Figs. 6 and 7), as well as under a simpler model
(MuHiSSE-2; Extended Data Figs. 8 and 9 and Supplementary Table 11).
These hidden states primarily separate riverine and Lake Tanganyika
lineages from those in lakes Malawi, Victoria and Barombi Mbo, which
have a higher background diversification rate (Extended Data Figs. 4
and 8). Differences in evolutionary lability explain speciation rate
variation within lake radiations, betweenriverine lineages and across
habitats.

Although we find that tooth complexity alone does not significantly
affect rates of lineage diversification within African cichlids, we tested
whether complexity shapes the rate of ecological diversification, a
major axis of divergence in adaptive radiations”. Using primary lit-
erature, we placed 875 species into 6 discrete diet categories (Supple-
mentary Table 6). We used areversible-jump Markov chain Monte Carlo
method in RevBayes to estimate dietary transition rates when lineages
have simple and complex teeth. Although all diets include species with
bothsimple and complex teeth (Fig.3c), meantransitionrates between
dietsare3.28 times higher when lineages have complex teeth (one-way
ANOVA; d.f.=59, F=15.9, Cohen’s d=1.03, P< 0.001; Fig. 3a,b). This
significantincrease in the rate of ecological diversificationis facilitated
by elevated transitions through herbivory and omnivory (Fig. 3a). Com-
plexteeth are thought tobe anadaptationto herbivory,andindeed we
find evidence for correlated evolution between these traits (Pagel’s
model; likelihood ratio = 136.237, P< 0.0001; Supplementary Table 12).
Theseresults support the hypothesis of complex teeth beinga crucial
toolfor transitions towards this axis of ecological specialization within
fishes.Inaddition, the diverse arrangements of multiple cusps may sup-
portagreater diversity of tooth functions*’. The versatility provided by
complex teeth to fill a range of ecological niches (Fig. 3a—c) probably
gave lineages with complex teeth an advantage in rapidly changing
rift lake environments**,

Evolutionary rates often show time dependency that may signal
interesting biological phenomena®*. The strong effect that lability has
ondiversification rates uncovered in our analyses indicates a specia-
tional mode of character change in extant fishes. We suggest that this
uniquely high lability of tooth complexity and complexity itself are key
innovations for African cichlids, which have interacted to spur rapid
diversification along multiple ecological axes of divergence. A rapid
changeintooth complexity candrive divergence along depth gradients
because complex teethare tightly associated with herbivoryinlittoral
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habitat, where algal productivity is high. The dietary versatility (Fig. 3a)
of complexteeth accelerates ecological diversification, and rapid rever-
sion to simple teeth can allow further ecological specialization, such
as piscivory**. Habitat and ecology are known axes of speciationin
cichlids?**® and divergence in tooth complexity also characterizes sym-
patric ecotypes at early stages of speciation*’. Haplochromine species,
which have colonized lakes Malawi and Victoriaand represent replicate
examples of explosive adaptive radiation, have both increased labil-
ity of tooth complexity (Fig. 2a) and a propensity to radiate in lakes’®.
Rapid transitions between simple and complex teeth may facilitate
simultaneous divergence in diet and along habitat gradients in rift
lakes. Together, these innovations allowed species in lakes Malawi,
Victoriaand Barombi Mbo to take advantage of expanding ecological
opportunities as the lakes filled, spurring rapid adaptive radiation.
Continued increases in tooth complexity within Actinopterygii and
across the vertebrate tree may be necessary to maintain diversification
rates as niches continue tofilland thereis aninevitable pushto feed at
alower trophic level#64,

Flexible development underlies lability

Althoughrare across living fishes, producing complex teeth requires
only a few changes within a highly conserved developmental pro-
gram®*8, Clades that rapidly lose and gain complex teeth may take
advantage of this by maintaining a flexible system of tooth develop-
ment, leading to rapid evolutionary transitions between simple and
complex teeth. Many haplochromine cichlids in lakes Malawi and
Victoria undergo ontogenetic transformations in tooth complexity
through consecutive tooth replacements, in which complex teeth in
juveniles can be gradually replaced with simple teeth in adult fish®,
This ontogenetic shift in tooth complexity suggests thatall haplochro-
mine lineages have the inherent developmental capacity to produce
complex teeth, irrespective of adult ecology. Differential tuning of
developmental pathways over ontogeny underlies trophicinnovations
in haplochromine cichlids*. Change in the timing of events during
tooth development®®, therefore, could be a mechanism for uniquely
rapid transitions between simple and complex teethin this exceptional

group.

Conclusions

The evolution of tooth complexity shapes rates of lineage diversi-
fication across the largest group of vertebrates, not by an effect of
complexity itselfbut by astrong effect of increased evolutionary labil-
ity. We further show that both tooth complexity and lability are key
innovations for African cichlids that interact to catalyse species and
ecological diversification in rift lake radiations and explain some of
the highest speciation rates seen in vertebrates. Our results offer a
counterpoint to the traditional view of evolutionary innovations as
traits thatrarely evolve and directly increase rates of lineage diversifica-
tion®. Differences in how innovations evolve across clades can have an
even greater effect on diversification when the trait is tightly coupled
to an axis of divergence, such as diet or habitat. This new concept of
evolutionary innovation—increased lability of a discrete trait, or an
‘evolutionary seesaw’—reflects clade-specific differences in evolv-
ability that could explain macroevolutionary variation in speciation
rates®. Defining traits as key innovations from this new perspective
is supported when the trait is linked to known speciation axes, and
developmental mechanisms may underlie the differences in lability®.
Identifying these differences in lability requires broad comparative
studies and multiple origins of the trait, two criteria often missing
from traditional key innovation studies. Considering evolutionary
innovations in this manner will probably implicate many previously
overlooked traits as important drivers of the widespread variation in
species diversification rates across the tree of life.
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Methods

Tooth complexity classification

We generated a dataset of tooth complexity classifications for 30,915
extant species of ray-finned fishes®, which represents all families,
from the existing literature (Supplementary Table 1). We considered
species to have complex teeth if primary teeth with more than one
cusp were present on the maxilla, premaxilla or dentary of adult fish.
Although complex teeth may varyin the total number of cusps (2-12),
thisbinary classification reflects amajor evolutionary transition with
functionalimplications, following the traditional view of akey innova-
tion. The datainclude all orders of Actinopterygii and missing dataare
not biased towards any particular group. We generated an expanded
dataset for cichlid lineages from Africa, South Asia and Madagascar
(n=1,069) representing 92.7% of taxonomically valid species described
before 2019 (ref. 31 and Supplementary Table 6). All categorizations
arebased on adult fish. We quantified the proportion of lineages with
complex teeth and proportion of lineages with high lability for each
family that had atleast one complex lineage and at least ten speciesin
the tree built with genetic sequence data (n = 31 families). These criteria
excluded Anablepidae (five speciesintree), Scoloplacidae (one species
intree), Astroblepidae (zero speciesintree), Ephippidae (eight species
intree), Scatophagidae (three speciesintree), Nomeidae (nine species
intree) and Ariommatidae (three speciesintree). We calculated these
proportions for Neotropical and African cichlids, two monophyletic
groups, separately to highlight the marked difference between these
two continental radiations (Extended Data Fig. 1b).

Phylogenies

We used the Fish Tree of Life' as the backbone phylogenetic hypothesis
for our analyses across ray-finned fishes. As phylogenies built using
birth-death polytomy resolvers and similar methods break down natu-
ral phylogenetic patterns and should not be used for analyses of trait
evolution®, we pruned our data to match a time-calibrated tree built
usingonly genetic sequence data (n =11,508 species) for all comparative
analyses; we recognize that the total number of transitions is prob-
ably underestimated because of this. For our analyses within cichlids,
we used the time-calibrated phylogeny of ref. 31, which includes all
taxonomically valid species before 2019 pruned to include the 1,069
species for which we had data on tooth complexity.

Character evolution models

We used continuous-time Markov models implemented in RevBayes
v1.2.1to study the evolution of tooth complexity across ray-finned
fishes and within cichlids. For our dataset across ray-finned fishes
(n=11,508 species), we fitted equal-rates (ER) and unequal-rates
(ARD) models. As the evolution of a trait can vary across large phy-
logenies®>*, we fitted additional ER and ARD models each with two
hidden rate categories (HR2-ER and HR2-ARD). These hidden states
are rate classes that allow transition rates to vary between classes but
impose the constraints of the ER and ARD models within each class.
We set a prior of 200 transitions across the tree. We also fitted amodel
that allowed the process (that is, ER or ARD) to vary across the tree,
andratesto vary between the processes (H2-variable). For this, we set
apriorof 200 transitions under ARD, 400 transitionsunder ER,and 10
transitions between these processes. We used a power posterior analy-
sis and stepping-stone sampler to estimate marginal likelihoods for
eachmodel. The simulation used 10 stones sampling 1,000 states from
each step with a 5,000-generation burn-in. For our expanded cichlid
dataset (n=1,069 species), we fitted ER, ARD, HR2-ER and HR2-ARD
models, as well as ER and ARD models with four hidden rate categories
(HR4-ER and HR4-ARD). We used a prior of 100 transitions between
simple and complex teeth. We again used a power posterior analysis
and stepping-stone sampler to estimate marginal likelihoods for each
model. The simulation used 100 stones, sampling 1,000 states from

each step with a burn-in 0of 10,000 generations. When comparing all
character evolution models, we used a flat Dirichlet prior distribution
fortheroot state frequencies. We compared model fit using Bayes fac-
tors, for which In[BF(M,, M,)]1 = In[P(XIM,)] - In[P(XIM})] and In[P(XIM,)]
is the log-transformed marginal likelihood of M,, In[P(XIM,)] is the
log-transformed marginal likelihood of M,, and In[BF(M,, M))]is the
log-transformed Bayes factor. To estimate ancestral states and transi-
tionrates for the best-fit model (HR2-ARD) across ray-finned fishes, we
rantwo independent Markov chain Monte Carlo (MCMC) replicates for
50,000 generations with 10% burn-in, with root state frequencies set
toanequal probability of simple across both hidden rate categories®.
We verified that both chains converged onthe same posterior distribu-
tion with Kolmogorov-Smirnov tests in the R package convenience®,
with aprecision (a) level of 0.01, and retained asingle run for analyses
(Extended DataFig. 2k-p). For cichlids (HR4-ER), we ran2 independent
MCMC replicates for 50,000 generations with10% burn-in and set root
state frequencies to an equal probability of simple or complex across
the two lower hidden rate categories owing to complete uncertainty
oftherootstate under aflat Dirichlet distribution. We verified conver-
gence with Kolmogorov-Smirnov tests (a = 0.01) and retained asingle
run for analyses (Extended Data Fig. 3e-j). We note that the MCMC
sampler in RevBayes requires fewer generations to reach convergence
because each generation is more computationally intensive. We used
ancestralStateTree to compute the MAP ancestral state estimation
and characterMapTree to generate the MAP character history through
stochastic character mapping*®. We visualized these MAP reconstruc-
tions using the R package RevGadgets v1.2.1¥.

State-dependent diversification

We used the non-parametric test FiSSE*® to test for state-dependent
diversification across our ray-finned fish dataset (n = 11,508 species)
because the computational burden of other models (that is, HiSSE) in
aBayesian framework is prohibitive at this scale. The R functions used
torunFiSSE are available at https://github.com/macroevolution/fisse/
tree/master/run_fisse. FiSSE analyses used a tolerance of 0.1and a par-
simony rate type because our ancestral state reconstruction suggests
that the use of an Mk model (equivalent toan ERmodel) isnot supported
(Fig.1fand Supplementary Table 3). Two-tailed Pvalues are reported.
We estimated speciation rates using the DR statistic*®. This metric is
considered an estimate of ‘recent’ speciation because it puts more
weight onrecent splitting events compared to splitting events deeper
in the tree. Accordingly, the DR statistic may be robust to issues of
non-identifiability®®. To supplement our FiSSE analyses, we conducted
phylogenetic ANOVA analyses on log-transformed DR values in the
Rpackage phytools v2.0.4%". Group sample sizes were 10,361 simple and
1,147 complex species, and 11,075 low and 433 high species for FiSSE and
ANOVA tests for effects of tooth complexity and lability, respectively.
We used Cohen’s d to estimate effect sizes, for which d is the differ-
ence in group means divided by the pooled standard deviation. For
our expanded cichlid dataset, we fitted a suite of formal Bayesian SSE
modelsinRevBayes v1.2.1. Character evolution models indicated that
the evolution of tooth complexity is a heterogeneous process across
African cichlids (Fig.2aand Supplementary Table 7), which violates an
assumption of SSE models®”. SSE models fitted over the full phylogeny
did not converge, probably for this reason. Toaccommodate this, and
better account for the extreme diversification rate heterogeneity within
Cichlidae™, we created four subtrees. Our subtrees represented Lake
Tanganyika (n =200 of 240 estimated species®; sampling fraction 0.83),
Lake Malawi (n = 374 0of 399 described species™; sampling fraction 0.94),
Lake Victoria region superflock (LVRS; n =169 of a conservative 300
estimated species; sampling fraction 0.56) and lineages in rivers and
smaller lakes (n = 317 of 318 described species®; sampling fraction 0.99).
We excluded lineages endemic to Lake Barombi Mbo from this analysis.
For each subtree, we fitted the same set of seven SSE models, which
included BiSSE®*, character-independent models®* with two, three and
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four rates (CID-2, CID-3 and CID-4) and HiSSE models® with two, three
and four hidden states (HiSSE-2, HiSSE-3 and HiSSE-4) in RevBayes. For
allmodels, we used anormal distributionas the prior distribution of the
log speciation and extinction rates, with mean In(no. taxa/2) divided
by the age of the tree. The prior expected number of character transi-
tions was unique to each subtree; Lake Tanganyika (10 transitions),
Lake Malawi (200 transitions), Lake Victoria (50 transitions) and rivers
(20 transitions). We used power posterior analysis and stepping-stone
sampling to calculate marginal likelihoods of all (n = 28) models, with
50 stonessampling1,000 states from each step and 5,000-generation
burn-in. We compared models withineach subtree using Bayes factors.
Models did not properly mix or reach convergence over the LVRS sub-
tree, possibly owing to the young age and high number of speciesin Lake
Victoriaitself. For thesereasons, we do notinterpret state-dependent
patterns for the LVRS subtree.

To test whether differences in evolutionary lability affect rates of
lineage diversification, we first assigned all species to the MAP tran-
sition rate class estimated from our ancestral state reconstruction.
The level of evolutionary lability was thus a binary trait for ray-finned
fishes (low or high) and a four-state trait for cichlids (very low, low,
high or very high). We again used FiSSE and phylogenetic ANOVA to
compare speciation rates, estimated using the DR statistic, for differ-
entlevels of lability across ray-finned fishes. For cichlids, we compared
four-state HiSSE models with two (MuHiSSE-2), three (MuHiSSE-3) and
four (MuHiSSE-4) hiddenstates as well as CID-2, CID-3 and CID-4 models
fitted over the full tree (n =1,069 tips), using power posterior analysis
and stepping-stone sampling (10 stones, 1,000 samples from each step,
5,000-generation burn-in) to estimate marginal likelihoods; we com-
pared the models using Bayes factors. Bayesian hidden-state models
inherently test the null hypothesis of character-independent diversi-
fication; if this hypothesis is supported, the posterior distribution of
diversificationrates within ahidden state would overlap. We interpret
this, along with formal model comparison, as combined evidence to
supportor refute the hypothesis of character-dependent diversifica-
tion. Models had a prior of ten transitions in the level of lability. We
used MCMC to sample the posterior distribution of speciation and
extinction rates for the MuHiSSE-2 and MuHiSSE-4 model to account
for instability in the marginal likelihood estimates of more complex
models (Supplementary Table 9). We ran two independent chains of
50,000 generations with 10% (MuHiSSE-2) and 20% (MuHiSSE-4) burn-in
and verified convergence of the runs with Kolmogorov-Smirnov tests
(a=0.01; Extended Data Fig. 5). We combined the runs and verified
convergence of the combined runs using checkConvergence in the
R package convenience (a = 0.01).

Distinguishing between high rates

Ancestral state reconstructions assume that diversification rates are
uncorrelated to the character state; high transition rates may therefore
be a product of high diversification rates. To address this, we first fit-
ted a HiSSE model using the R package castor®* to estimate transition
rates between simple and complex teeth while accounting for differ-
ences in speciation and extinction between lineages (100 trials, 100
bootstrap samplings, sampling fraction = 0.328). Convergence failed
after multiple optimization attempts, probably owing to the high tip
bias towards species with simple teeth and rarity of lineages with high
lability, which decreases the power and reliability of SSE models*¢25,
We report the estimated transition rates (Supplementary Table 5) to
illustrate that qualitative patterns are similar to the HR2-ARD model.
For all analyses in the main text, we use the transition rates estimated
under the HR2-ARD model. Second, we conducted FiSSE tests over
simulated character histories. We simulated 100 character histories
ofa2-state character with 2 hidden states (HR2-ARD) across the Actin-
opterygian tree (n=11,508 species) using a fixed transition matrix
using the rTraitDisc functionin the R package ape®. We populated the
matrix with the mean rates estimated from the observed data under

the HR2-ARD model, rescaled the matrix by a factor of 100, and set
equilibrium frequencies equal across all states. For each simulation,
we pulled out tip states and conducted FiSSE tests. We find that under
the simulated data, tip speciation rates are similar between low and
high lability (Extended Data Fig. 2d,e). Median A values for low and
high lability are similar (A,,,, = 0.134, A5, = 0.120). The distribution of
two-tailed P values for FiSSE tests under the simulated data falls outside
the significance level of 0.05 (96/100 tests; Extended Data Fig. 2f).

Extinction rate assumptions

To test whether our results were robust to assumptions on the extinc-
tion rate, we followed the methods of ref. 67 to place lower bounds
on the prior distribution of extinction rates for both the MuHiSSE-2
and MuHiSSE-4 models. Extinction rates (i) were defined as a linear
function, withu=AxA+6,inwhichA4=0.7,0.8,0.9,10r1.1,and 6
isarandom variable that allows extinction to be greater than A x A.
Arepresents alower bound on the extinction fraction (u/A),soA=0.7
delineates that extinction rates must be at least 70% of speciation rates.
For each A, we estimated speciation and extinction rates under the
MuHiSSE-2 and MuHiSSE-4 model using MCMC; each chain was run
for 100,000 generations. The posterior distributions of speciation
and net diversificationrates for all values of 4 (0.7,0.8,0.9,1.0and 1.1)
andwhenpandAarefreely estimated are shownin Extended DataFig. 9
(MuHiSSE-2) and Extended Data Figs. 6 and 7 (MuHiSSE-4). We find
thatwhenA =0.7,0.8 or 0.9, the effect of lability on net diversification
rates is consistent with the patterns under the free MuHiSSE-2 and
MuHiSSE-4 model (Extended Data Figs. 7 and 9a), but the magnitude of
the estimatedratesisreduced. When A =1.0, we find that the posterior
distributions of rates largely overlap within all hidden rate catego-
ries. When A = 1.1, we find the reverse effect, in which increased lability
appears to decrease net diversification rates. This reversed effect is
probably due to the constraint of extinction being at minimum 110%
of speciation rates; if a trait markedly increases speciation rates, then
the corresponding extinction rates are forced to be high, resulting
in alarge effect on net diversification. Indeed, we find that when net
diversification is negatively affected by increased lability for A=1.1,
speciation rates show a strong positive effect of lability (Extended
Data Figs. 6 and 9b). These patterns are consistent with the results of
ref. 67, indicating that high lability has a greater absolute effect on net
diversification than low lability.

Transition rate prior sensitivity

Theinferred number of character transitions, character histories and
transition rates may be influenced by the choice of the transition rate
prior. To test for prior sensitivity, we estimated the parameters of the
HR2-ARD model under five priors: 50,150,200, 250 and 400 transitions.
Across priors, the relative difference between transition rates in both
low- and high-lability categoriesis consistent, and the estimated num-
ber of transitions and transition rates are consistent across all priors
when lability is low (Supplementary Table 4). We find that increasing
the prior number of transitions above 200 results in inflated transition
rates when lability is high, driven by rapid consecutive state changes
along the same branch (Extended Data Fig. 2a). Increasing the prior
decreases the number of lineages with high lability and further isolates
African cichlids as the dominant lineages with high lability (Extended
DataFig.2b,c). Wereplicated our FiSSE analyses to test for an effect of
lability from the ancestral state reconstructions across all five priors.
We find that the effect of lability on tip speciation rates is insensitive
to the choice of prior on the transition rate; lineages with high lability
have significantly higher tip speciation rates across all five priors (50:
Aoy =0.114, ;1. = 0.28, two-tailed P < 0.05;150: 4,,,, = 0.116, Ay, = 0.507,
two-tailed P < 0.01; 250: A,,,, = 0.117, Ay, = 0.744, two-tailed P < 0.005;
400: A, = 0.117, Ay, = 0.818, two-tailed P < 0.005). We also tested the
sensitivity of transition rates within African cichlids to the prior. We
estimated parameters of the HR4-ER model under three priors; 50,
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100 and 150 transitions. We find that the transition rate estimates are
stable under different priors (Extended Data Fig. 3a-d).

Cichlid dietdata

We categorized 875 species of cichlidsinto 6 diet categories on the basis
ofthe dominant adult prey type of each species. Categorizations were
based on primary literature (Supplementary Table 6) and FishBase®®.
We classified speciesinto one of six groups: piscivore, zooplanktivore,
zoobenthivore (insects and molluscs), herbivore, omnivore and car-
nivore specialist (lepidophagy and paedophagy). For all diet analyses,
weused atree pruned toinclude only the 875 species for which we had
dataonboth diet and tooth complexity.

Diet evolutionin cichlids

To test whether tooth complexity accelerated ecological diversifica-
tion, we first expanded our dietary dataset to include an associated
binary state for tooth complexity (simple or complex) resulting in
12 combined diet-tooth states. All dietary classifications included
bothsimple and complex lineages (Fig. 3c). We used areversible-jump
MCMCinRevBayes v1.2.1to estimate transition rates between dietary
categories within simple and complex lineages. We included a ‘null’
model in which the transition rate between any state was assumed to
be 0 (as some transitions probably never occur; that s, simple piscivore
to simple herbivore), and an ARD model that assumes the transition
rate between any state is greater than O, with a prior of 300 transi-
tions. We set a prior probability of 0.25 that any transition rate is equal
to 0. The MCMC was run for 10,000 generations, sampling every gen-
eration with 10% burn-in. We verified convergence of the transition
rate estimates using checkConvergencein the R package convenience
(a=0.01; effective sample size > 625 for all transition rate parameters).
Meanrates were calculated from the posterior distribution for further
analyses. We directly estimated the posterior probability that any rate
was equal to O; rates were fixed to be O if the posterior probability was
estimated to be >0.75. We log + 0.01-transformed mean rates to fulfil
assumptions of normality (Shapiro-Wilk test; W= 0.96, P> 0.05) and
used an ANOVA test to compare rates when lineages have complex teeth
(n=30)towhenlineages have simple teeth (n =30). We estimated the
effectsize with Cohen’sd. To test for correlated evolution between com-
plexteeth and herbivory, we first converted our dietary classifications
intoabinary trait of herbivores and non-herbivores. We then used the
fitPagel functionin the R package phytools v2.0-4% to fitindependent
and dependent trait evolution models®® and compared the fits with a
likelihood-ratio test. Our results are robust to an alternative binariza-
tion of herbivory (herbivores versus herbivores and omnivores; Sup-
plementary Table 12).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.
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Sampling strategy Our strategy was to classify tooth complexity for all species of ray-finned fishes present in the Fish Tree of Life (https://
fishtreeoflife.org/). For this, we used existing literature as well as through observation of specimens purchased through the aquarium
trade (for some cichlids and coral reef fishes).

Data collection Nick Peoples collected all data on tooth complexity and diet through an extensive review of the literature. No software was used.

Timing and spatial scale Data was collected over a period of two years (2021-2023).

Data exclusions We excluded 19,407 species from our phylogenetic analyses across ray-finned fishes because these species were input into the
phylogenetic tree using stochastic polytomy resolvers, which are well-known to break natural phylogenetic patterns. Trees built using

these methods should not be used for analyses of trait evolution. We restricted our phylogenetic analyses to 11,508 species using a
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Reproducibility posterior analyses and MCMC runs. Two tables are provided in the supplementary information that include references for all our
tooth complexity and diet classifications.

Randomization We used consistent criteria to classify fish teeth as being simple or complex. Most often, this explicit classification was reported in
species descriptions/taxonomic review papers. Teeth are considered complex if there are two or more cusps present, with spacing

between the cusps.

Blinding No data blinding was performed.

Did the study involve field work? []ves X No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies [] chip-seq

Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging
Animals and other organisms

Clinical data

Dual use research of concern

Plants

XXXNXX XX s
OOoooOood

Plants

Seed stocks NA

Novel plant genotypes ~ NA

Authentication NA
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